Abstract
In some epithelia, mucosal exposure to osmotic loads produces an increase in transepithelial resistance that is presumed to relate to the collapse of the paracellular spaces. Since proximal small intestinal epithelium may transiently encounter osmotic loads during normal digestion, we examined the short-term effect of osmotic loads on resistance and on epithelial structure of mucosal sheets prepared from guinea pig jejunum using Ussing-chamber, thin-section electron- microscopic, and freeze-fracture techniques. After equilibration of mucosal sheets in chambers, mucosal buffer tonicity was increased to 600 mosM with mannitol. This resulted in a 64% increase in resistance within 20 min. Concomitantly, 600 mosM produced a decrease in tight- junction cation selectivity as judged from dilution potentials, collapse of paracellular spaces, decreased cytoplasmic electron density in 10-40% of absorptive cells, and focal absorptive-cell subjunctional lateral-membrane evaginations often associated with microfilament arrays. Freeze-fracture replicas of absorptive-cell tight junctions revealed significant increases in both strand count and depth. Preincubation with 5 micrograms/ml cytochalasin D reduced the 600 mosM resistance increase caused by 600 mosM exposure by 48% but did not prevent the collapse of paracellular spaces. Lowered temperatures that produced morphologic evidence consistent with a gel-phase transition of absorptive-cell lateral membranes prevented both the resistance response and the alterations in tight-junction structure. In conclusion, transient osmotic loads produce an increase in resistance in jejunal epithelium and alter both absorptive-cell tight-junction charge selectivity and structure. These responses, which may have physiologic implications, can be reduced by cytoskeletal inhibitors and ablated by conditions that restrict mobility of absorptive-cell lateral- membrane molecules.
Full Text
The Full Text of this article is available as a PDF (4.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amberson W. R., Klein H. THE INFLUENCE OF pH UPON THE CONCENTRATION POTENTIALS ACROSS THE SKIN OF THE FROG. J Gen Physiol. 1928 Jul 20;11(6):823–841. doi: 10.1085/jgp.11.6.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armond P. A., Staehelin L. A. Lateral and vertical displacement of integral membrane proteins during lipid phase transition in Anacystis nidulans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1901–1905. doi: 10.1073/pnas.76.4.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bentzel C. J., Hainau B., Ho S., Hui S. W., Edelman A., Anagnostopoulos T., Benedetti E. L. Cytoplasmic regulation of tight-junction permeability: effect of plant cytokinins. Am J Physiol. 1980 Sep;239(3):C75–C89. doi: 10.1152/ajpcell.1980.239.3.C75. [DOI] [PubMed] [Google Scholar]
- Bentzel C. J., Parsa B., Hare D. K. Osmotic flow across proximal tubule of Necturus: correlation of physiologic and anatomic studies. Am J Physiol. 1969 Aug;217(2):570–580. doi: 10.1152/ajplegacy.1969.217.2.570. [DOI] [PubMed] [Google Scholar]
- Bindslev N., Tormey J. M., Wright E. M. The effects of electrical and osmotic gradients on lateral intercellular spaces and membrane conductance in a low resistance epithelium. J Membr Biol. 1974;19(4):357–380. doi: 10.1007/BF01869986. [DOI] [PubMed] [Google Scholar]
- Brasitus T. A., Tall A. R., Schachter D. Thermotropic transitions in rat intestinal plasma membranes studied by differential scanning calorimetry and fluorescence polarization. Biochemistry. 1980 Mar 18;19(6):1256–1261. doi: 10.1021/bi00547a033. [DOI] [PubMed] [Google Scholar]
- Bretscher A., Weber K. Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. J Cell Biol. 1978 Dec;79(3):839–845. doi: 10.1083/jcb.79.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cereijido M., Stefani E., Palomo A. M. Occluding junctions in a cultured transporting epithelium: structural and functional heterogeneity. J Membr Biol. 1980 Mar 31;53(1):19–32. doi: 10.1007/BF01871169. [DOI] [PubMed] [Google Scholar]
- Civan M. M., DiBona D. R. Pathways for movement of ions and water across toad urinary bladder. III. Physiologic significance of the paracellular pathway. J Membr Biol. 1978 Feb 3;38(4):359–386. doi: 10.1007/BF01870152. [DOI] [PubMed] [Google Scholar]
- Claude P., Goodenough D. A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. doi: 10.1083/jcb.58.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol. 1978 Mar 10;39(2-3):219–232. doi: 10.1007/BF01870332. [DOI] [PubMed] [Google Scholar]
- Craig S. W., Pardo J. V. alpha-Actinin localization in the junctional complex of intestinal epithelial cells. J Cell Biol. 1979 Jan;80(1):203–210. doi: 10.1083/jcb.80.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duffey M. E., Hainau B., Ho S., Bentzel C. J. Regulation of epithelial tight junction permeability by cyclic AMP. Nature. 1981 Dec 3;294(5840):451–453. doi: 10.1038/294451a0. [DOI] [PubMed] [Google Scholar]
- Erlij D., Martínez-Palomo A. Opening of tight junctions in frog skin by hypertonic urea solutions. J Membr Biol. 1972;9(3):229–240. [PubMed] [Google Scholar]
- Frederiksen O., Rostgaard J. Absence of dilated lateral intercellular spaces in fluid-transporting frog gallbladder epithelium. Direct microscopy observations. J Cell Biol. 1974 Jun;61(3):830–834. doi: 10.1083/jcb.61.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frizzell R. A., Schultz S. G. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol. 1972 Mar;59(3):318–346. doi: 10.1085/jgp.59.3.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabbiani G., Chaponnier C., Zumbe A., Vassalli P. Actin and tubulin co-cap with surface immunoglobulins in mouse B lymphocytes. Nature. 1977 Oct 20;269(5630):697–698. doi: 10.1038/269697a0. [DOI] [PubMed] [Google Scholar]
- HUNT J. N. Some properties of an alimentary osmoreceptor mechanism. J Physiol. 1956 May 28;132(2):267–288. doi: 10.1113/jphysiol.1956.sp005524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hénin S., Cremaschi D., Schettino T., Meyer G., Donin C. L., Cotelli F. Electrical parameters in gallbladders of different species. Their contribution to the origin of the transmural potential difference. J Membr Biol. 1977 Jun 3;34(1):73–91. doi: 10.1007/BF01870294. [DOI] [PubMed] [Google Scholar]
- Kachar B., Pinto da Silva P. Rapid massive assembly of tight junction strands. Science. 1981 Jul 31;213(4507):541–544. doi: 10.1126/science.7244652. [DOI] [PubMed] [Google Scholar]
- Kagnoff M. F., Donaldson R. M., Jr, Trier J. S. Organ culture of rabbit small intestine: prolonged in vitro steady state protein synthesis and secretion and secretory IgA secretion. Gastroenterology. 1972 Oct;63(4):541–551. [PubMed] [Google Scholar]
- Kauffman G. L., Jr, Thompson M. R. Titration of sodium channels in canine gastric mucosa. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3731–3734. doi: 10.1073/pnas.72.9.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarides E., Burridge K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell. 1975 Nov;6(3):289–298. doi: 10.1016/0092-8674(75)90180-4. [DOI] [PubMed] [Google Scholar]
- Lipman K. M., Dodelson R., Hays R. M. The surface charge of isolated toad bladder epithelial cells. Mobility, effect of pH and divalent ions. J Gen Physiol. 1966 Jan;49(3):501–516. doi: 10.1085/jgp.49.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meza I., Sabanero M., Stefani E., Cereijido M. Occluding junctions in MDCK cells: modulation of transepithelial permeability by the cytoskeleton. J Cell Biochem. 1982;18(4):407–421. doi: 10.1002/jcb.1982.240180403. [DOI] [PubMed] [Google Scholar]
- Poste G., Papahadjopoulos D., Nicolson G. L. Local anesthetics affect transmembrane cytoskeletal control of mobility and distribution of cell surface receptors. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4430–4434. doi: 10.1073/pnas.72.11.4430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pricam C., Humbert F., Perrelet A., Orci L. A freeze-etch study of the tight junctions of the rat kidney tubules. Lab Invest. 1974 Mar;30(3):286–291. [PubMed] [Google Scholar]
- Puszkin S., Puszkin E., Maimon J., Rouault C., Schook W., Ores C., Kochwa S., Rosenfield R. alpha-Actinin and tropomyosin interactions with a hybrid complex of erythrocyte-actin and muscle-myosin. J Biol Chem. 1977 Aug 10;252(15):5529–5537. [PubMed] [Google Scholar]
- Rasenick M. M., Stein P. J., Bitensky M. W. The regulatory subunit of adenylate cyclase interacts with cytoskeletal components. Nature. 1981 Dec 10;294(5841):560–562. doi: 10.1038/294560a0. [DOI] [PubMed] [Google Scholar]
- Reuss L., Finn A. L. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular and shunt conductances. J Gen Physiol. 1974 Jul;64(1):1–25. doi: 10.1085/jgp.64.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Frizzell R. A., Nellans H. N. Active sodium transport and the electrophysiology of rabbit colon. J Membr Biol. 1977 May 12;33(3-4):351–384. doi: 10.1007/BF01869524. [DOI] [PubMed] [Google Scholar]
- Smyth D. H., Wright E. M. Streaming potentials in the rat small intestine. J Physiol. 1966 Feb;182(3):591–602. doi: 10.1113/jphysiol.1966.sp007839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spenney J. G., Shoemaker R. L., Sachs G. Microelectrode studies of fundic gastric mucosa: cellular coupling and shunt conductance. J Membr Biol. 1974;19(1):105–128. doi: 10.1007/BF01869973. [DOI] [PubMed] [Google Scholar]
- Tomasini J. T., Dobbins W. O. Intestinal mucosal morphology during water and electrolyte absorption. A light and electron microscopic study. Am J Dig Dis. 1970 Mar;15(3):226–238. doi: 10.1007/BF02233453. [DOI] [PubMed] [Google Scholar]
- Wade J. B., Karnovsky M. J. Fracture faces of osmotically disrupted zonulae occludentes. J Cell Biol. 1974 Aug;62(2):344–350. doi: 10.1083/jcb.62.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wade J. B., Revel J. P., DiScala V. A. Effect of osmotic gradients on intercellular junctions of the toad bladder. Am J Physiol. 1973 Feb;224(2):407–415. doi: 10.1152/ajplegacy.1973.224.2.407. [DOI] [PubMed] [Google Scholar]
- Wiedner G., Wright E. M. The role of the lateral intercellular spaces in the control of ion permeation across the rabbit gall bladder. Pflugers Arch. 1975 Jul 9;358(1):27–40. doi: 10.1007/BF00584567. [DOI] [PubMed] [Google Scholar]
- Wright E. M., Diamond J. M. Effects of pH and polyvalent cations on the selective permeability of gall-bladder epithelium to monovalent ions. Biochim Biophys Acta. 1968 Aug;163(1):57–74. doi: 10.1016/0005-2736(68)90033-3. [DOI] [PubMed] [Google Scholar]
- Yakara I., Kakimoto-Sameshima F. Microtubule organization of lymphocytes and its modulation by patch and cap formation. Cell. 1978 Sep;15(1):251–259. doi: 10.1016/0092-8674(78)90100-9. [DOI] [PubMed] [Google Scholar]