Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Jul 1;97(1):73–80. doi: 10.1083/jcb.97.1.73

Role of cholesterol in the capping of surface immunoglobulin receptors on murine lymphocytes

PMCID: PMC2112485  PMID: 6223042

Abstract

Previously, we have shown that the capping of surface immunoglobulins on murine lymphocytes can be affected by modulating the lipid environment of the surface membrane with free fatty acids. In the present study, murine lymphocytes were depleted of cholesterol by incubation with phospholipid vesicles. As the cellular cholesterol:phospholipid ratio decreased, the capping of the surface immunoglobulin was seen to decrease. This inhibition of capping could not be reversed by calcium and is not accompanied by changes in either the cytoskeletal element alpha-actinin or cellular ATP levels. Incubation of the cholesterol-depleted cells with cholesterol- containing phospholipid vesicles raised both the cholesterol:phospholipid ratio and capping levels to values close to those of untreated control cells. Remarkably, stearic acid, a saturated fatty acid, could also restore the capping levels in the cholesterol- depleted cells. On the basis of the present data and measurements of the fluorescence polarization of the probe diphenyl hexatriene, we propose a model in which the protein(s) involved in capping is located in a gel-like lipid domain, and that removal of cholesterol makes this domain less gel-like and inhibits capping. Restoration of the gel-like nature of this domain by the addition of either cholesterol or stearic acid enables the protein(s) to function normally.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Backer J. M., Dawidowicz E. A. The rapid transmembrane movement of cholesterol in small unilamellar vesicles. Biochim Biophys Acta. 1979 Mar 8;551(2):260–270. doi: 10.1016/0005-2736(89)90004-7. [DOI] [PubMed] [Google Scholar]
  4. Baldassare J. J., Saito Y., Silbert D. F. Effect of sterol depletion on LM cell sterol mutants. Changes in the lipid composition of the plasma membrane and their effects on 3-O-methlglucose transport. J Biol Chem. 1979 Feb 25;254(4):1108–1113. [PubMed] [Google Scholar]
  5. Braun J., Sha'afi R. I., Unanue E. R. Crosslinking by ligands to surface immunoglobulin triggers mobilization of intracellular 45Ca2+ in B lymphocytes. J Cell Biol. 1979 Sep;82(3):755–766. doi: 10.1083/jcb.82.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bruckdorfer K. R., Edwards P. A., Green C. Properties of aqueous dispersions of phospholipid and cholesterol. Eur J Biochem. 1968 May;4(4):506–511. doi: 10.1111/j.1432-1033.1968.tb00241.x. [DOI] [PubMed] [Google Scholar]
  7. Cornell R. B., Nissley S. M., Horwitz A. F. Cholesterol availability modulates myoblast fusion. J Cell Biol. 1980 Sep;86(3):820–824. doi: 10.1083/jcb.86.3.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Corps A. N., Pozzan T., Hesketh T. R., Metacalfe J. C. cis-Unsaturated fatty acids inhibit cap formation on lymphocytes by depleting cellular ATP. J Biol Chem. 1980 Nov 25;255(22):10566–10568. [PubMed] [Google Scholar]
  9. Dawidowicz E. A., Rothman J. E. Fusion and protein-mediated phospholipid exchange studied with single bilayer phosphatidylcholine vesicles of different density. Biochim Biophys Acta. 1976 Dec 14;455(3):621–630. doi: 10.1016/0005-2736(76)90036-5. [DOI] [PubMed] [Google Scholar]
  10. Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
  11. Demel R. A., Jansen J. W., van Dijck P. W., van Deenen L. L. The preferential interaction of cholesterol with different classes of phospholipids. Biochim Biophys Acta. 1977 Feb 14;465(1):1–10. doi: 10.1016/0005-2736(77)90350-9. [DOI] [PubMed] [Google Scholar]
  12. Engelman D. M., Rothman J. E. The planar organization of lecithin-cholesterol bilayers. J Biol Chem. 1972 Jun 10;247(11):3694–3697. [PubMed] [Google Scholar]
  13. Friend D. S., Bearer E. L. beta-Hydroxysterol distribution as determined by freeze-fracture cytochemistry. Histochem J. 1981 Jul;13(4):535–546. doi: 10.1007/BF01002709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hill D. J., Dawidowicz E. A., Andrews M. L., Karnovsky M. J. Modulation of microsomal glucose-6-phosphate translocase activity by free fatty acids: implications for lipid domain structure in microsomal membranes. J Cell Physiol. 1983 Apr;115(1):1–8. doi: 10.1002/jcp.1041150102. [DOI] [PubMed] [Google Scholar]
  15. Hoover R. L., Fujiwara K., Klausner R. D., Bhalla D. K., Tucker R., Karnovsky M. J. Effects of free fatty acids on the organization of cytoskeletal elements in lymphocytes. Mol Cell Biol. 1981 Oct;1(10):939–948. doi: 10.1128/mcb.1.10.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoover R. L., Klausner R., Karnovsky M. J. Inhibition of cap formation on lymphocytes by free fatty acids is not mediated by a depletion of ATP. J Biol Chem. 1982 Mar 10;257(5):2151–2154. [PubMed] [Google Scholar]
  17. Hoover R. L., Lynch R. D., Karnovsky M. J. Decrease in adhesion of cells cultured in polyunsaturated fatty acids. Cell. 1977 Sep;12(1):295–300. doi: 10.1016/0092-8674(77)90207-0. [DOI] [PubMed] [Google Scholar]
  18. Horwitz A. F., Wight A., Ludwig P., Cornell R. Interrelated lipid alterations and their influence on the proliferation and fusion of cultured myogenic cells. J Cell Biol. 1978 May;77(2):334–357. doi: 10.1083/jcb.77.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kimelberg H. K., Papahadjopoulos D. Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na+ + K+)-stimulated adenosine triphosphatase. J Biol Chem. 1974 Feb 25;249(4):1071–1080. [PubMed] [Google Scholar]
  20. Klausner R. D., Bhalla D. K., Dragsten P., Hoover R. L., Karnovsky M. J. Model for capping derived from inhibition of surface receptor capping by free fatty acids. Proc Natl Acad Sci U S A. 1980 Jan;77(1):437–441. doi: 10.1073/pnas.77.1.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klausner R. D., Kleinfeld A. M., Hoover R. L., Karnovsky M. J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 1980 Feb 25;255(4):1286–1295. [PubMed] [Google Scholar]
  22. Klein I., Moore L., Pastan I. Effect of liposomes containing cholesterol on adenylate cyclase activity of cultured mammalian fibroblasts. Biochim Biophys Acta. 1978 Jan 4;506(1):42–53. doi: 10.1016/0005-2736(78)90433-9. [DOI] [PubMed] [Google Scholar]
  23. Klein R. A. The detection of oxidation in liposome preparations. Biochim Biophys Acta. 1970 Sep 8;210(3):486–489. doi: 10.1016/0005-2760(70)90046-9. [DOI] [PubMed] [Google Scholar]
  24. Mabrey S., Mateo P. L., Sturtevant J. M. High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoylphosphatidylcholines. Biochemistry. 1978 Jun 13;17(12):2464–2468. doi: 10.1021/bi00605a034. [DOI] [PubMed] [Google Scholar]
  25. Pagano R. E., Weinstein J. N. Interactions of liposomes with mammalian cells. Annu Rev Biophys Bioeng. 1978;7:435–468. doi: 10.1146/annurev.bb.07.060178.002251. [DOI] [PubMed] [Google Scholar]
  26. Pozzan T., Corps A. N., Montecucco C., Hesketh T. R., Metcalfe J. C. Cap formation by various ligands on lymphocytes shows the same dependence on high cellular ATP levels. Biochim Biophys Acta. 1980 Nov 18;602(3):558–566. doi: 10.1016/0005-2736(80)90334-x. [DOI] [PubMed] [Google Scholar]
  27. Presti F. T., Chan S. I. Cholesterol-phospholipid interaction in membranes. 1. Cholestane spin-label studies of phase behavior of cholesterol-phospholipid liposomes. Biochemistry. 1982 Aug 3;21(16):3821–3830. doi: 10.1021/bi00259a016. [DOI] [PubMed] [Google Scholar]
  28. Robinson J. M., Karnovsky M. J. Evaluation of the polyene antibiotic filipin as a cytochemical probe for membrane cholesterol. J Histochem Cytochem. 1980 Feb;28(2):161–168. doi: 10.1177/28.2.6766487. [DOI] [PubMed] [Google Scholar]
  29. Rubenstein J. L., Owicki J. C., McConnell H. M. Dynamic properties of binary mixtures of phosphatidylcholines and cholesterol. Biochemistry. 1980 Feb 5;19(3):569–573. doi: 10.1021/bi00544a027. [DOI] [PubMed] [Google Scholar]
  30. Schreiner G. F., Unanue E. R. Calcium-sensitive modulation of Ig capping: evidence supporting a cytoplasmic control of ligand-receptor complexes. J Exp Med. 1976 Jan 1;143(1):15–31. doi: 10.1084/jem.143.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schreiner G. F., Unanue E. R. The disruption of immunoglobulin caps by local anesthetics. Clin Immunol Immunopathol. 1976 Sep;6(2):264–269. doi: 10.1016/0090-1229(76)90118-5. [DOI] [PubMed] [Google Scholar]
  32. Shinitzky M., Inbar M. Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells. J Mol Biol. 1974 Jan 5;85(4):603–615. doi: 10.1016/0022-2836(74)90318-0. [DOI] [PubMed] [Google Scholar]
  33. Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Warren G. B., Houslay M. D., Metcalfe J. C., Birdsall N. J. Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature. 1975 Jun 26;255(5511):684–687. doi: 10.1038/255684a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES