Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Jul 1;97(1):137–144. doi: 10.1083/jcb.97.1.137

Role of laminin in epithelium formation by F9 aggregates

PMCID: PMC2112493  PMID: 6190817

Abstract

The formation and maturation of the outer epithelial layer is essential for maximal alphafetoprotein (AFP) production during differentiation of F9 embryoid bodies in the presence of 5 X 10(-8) M retinoic acid (Grover et al., 1983. J. Cell Biol. 96:1690-1696). The critical phase is between the third and the fourth day when the components of the extracellular matrix organize into a basement membrane. The role of some of these components in the process of epithelium formation and maturation is analyzed in this paper. The role of laminin was investigated by testing the effect of exogenous laminin and antilaminin in cultures of differentiating F9 aggregates. Tests included growth rates, morphological changes, AFP production, determination of AFP mRNA levels, and fluorescent staining for basement membrane components and for epithelial markers. At concentrations greater than 5 micrograms/ml, exogenous laminin inhibited the production of AFP and prevented AFP gene transcription. On the basis of immunofluorescence tests, exogenous laminin appeared to act by preventing the accumulation of a basement membrane and by disrupting the organization of the outer layer into an epithelium. No such effects were produced by fibronectin or collagens type I or IV. Aggregates cultured in the presence of antilaminin also failed to organize an epithelium and did not produce AFP, whereas those in normal rabbit serum differentiated normally. Therefore, endogenous laminin plays a key role not only as a basement membrane structural component but also in organizing the epithelial layer of endoderm cells and hence (indirectly) in gene expression.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson E. D., Ayers S. E. The localization and synthesis of some collagen types in developing mouse embryos. Cell. 1979 Apr;16(4):953–965. doi: 10.1016/0092-8674(79)90110-7. [DOI] [PubMed] [Google Scholar]
  2. Adamson E. D., Deller M. J., Warshaw J. B. Functional EGF receptors are present on mouse embryo tissues. Nature. 1981 Jun 25;291(5817):656–659. doi: 10.1038/291656a0. [DOI] [PubMed] [Google Scholar]
  3. Albrechtsen R., Nielsen M., Wewer U., Engvall E., Ruoslahti E. Basement membrane changes in breast cancer detected by immunohistochemical staining for laminin. Cancer Res. 1981 Dec;41(12 Pt 1):5076–5081. [PubMed] [Google Scholar]
  4. Andrews G. K., Dziadek M., Tamaoki T. Expression and methylation of the mouse alpha-fetoprotein gene in embryonic, adult, and neoplastic tissues. J Biol Chem. 1982 May 10;257(9):5148–5153. [PubMed] [Google Scholar]
  5. Andrews G. K., Teng C. S. Studies on sex-organ development. Prenatal effect of oestrogenic hormone on tubular-gland cell morphogenesis and ovalbumin-gene expression in the chick Müllerian duct. Biochem J. 1979 Aug 15;182(2):271–286. doi: 10.1042/bj1820271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chung A. E., Freeman I. L., Braginski J. E. A novel extracellular membrane elaborated by a mouse embryonal carcinoma-derived cell line. Biochem Biophys Res Commun. 1977 Dec 7;79(3):859–868. doi: 10.1016/0006-291x(77)91190-1. [DOI] [PubMed] [Google Scholar]
  7. Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70(A):419–439. doi: 10.1016/s0076-6879(80)70067-8. [DOI] [PubMed] [Google Scholar]
  8. Freeman A. E., Engvall E., Hirata K., Yoshida Y., Kottel R. H., Hilborn V., Ruoslahti E. Differentiation of fetal liver cells in vitro. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3659–3663. doi: 10.1073/pnas.78.6.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukuda M. N., Fukuda M., Hakomori S. Cell surface modification by endo-beta-galactosidase. Change of blood group activities and release of oligosaccharides from glycoproteins and glycosphingolipids of human erythrocytes. J Biol Chem. 1979 Jun 25;254(12):5458–5465. [PubMed] [Google Scholar]
  10. Grover A., Oshima R. G., Adamson E. D. Epithelial layer formation in differentiating aggregates of F9 embryonal carcinoma cells. J Cell Biol. 1983 Jun;96(6):1690–1696. doi: 10.1083/jcb.96.6.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  12. Hogan B. L., Taylor A., Adamson E. Cell interactions modulate embryonal carcinoma cell differentiation into parietal or visceral endoderm. Nature. 1981 May 21;291(5812):235–237. doi: 10.1038/291235a0. [DOI] [PubMed] [Google Scholar]
  13. Hogan B. L., Tilly R. Cell interactions and endoderm differentiation in cultured mouse embryos. J Embryol Exp Morphol. 1981 Apr;62:379–394. [PubMed] [Google Scholar]
  14. Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kefalides N. A., Denduchis B. Structural components of epithelial and endothelial basement membranes. Biochemistry. 1969 Nov;8(11):4613–4621. doi: 10.1021/bi00839a057. [DOI] [PubMed] [Google Scholar]
  16. Law S., Tamoaki T., Kreuzaler F., Dugaiczyk A. Molecular cloning of DNA complementary to a mouse alpha-fetoprotein mRNA sequence. Gene. 1980 Jun;10(1):53–61. doi: 10.1016/0378-1119(80)90143-2. [DOI] [PubMed] [Google Scholar]
  17. Linsenmayer T. F., Gibney E., Toole B. P., Gross J. Cellular adhesion to collagen. Exp Cell Res. 1978 Oct 15;116(2):470–474. doi: 10.1016/0014-4827(78)90473-1. [DOI] [PubMed] [Google Scholar]
  18. MARSH W. L. Anti-i: a cold antibody defining the Ii relationship in human red cells. Br J Haematol. 1961 Apr;7:200–209. doi: 10.1111/j.1365-2141.1961.tb00329.x. [DOI] [PubMed] [Google Scholar]
  19. Oshima R. G. Identification and immunoprecipitation of cytoskeletal proteins from murine extra-embryonic endodermal cells. J Biol Chem. 1981 Aug 10;256(15):8124–8133. [PubMed] [Google Scholar]
  20. Rizzino A., Terranova V., Rohrbach D., Crowley C., Rizzino H. The effects of laminin on the growth and differentiation of embryonal carcinoma cells in defined media. J Supramol Struct. 1980;13(2):243–253. doi: 10.1002/jss.400130212. [DOI] [PubMed] [Google Scholar]
  21. Ruoslahti E., Engvall E., Hayman E. G. Fibronectin: current concepts of its structure and functions. Coll Relat Res. 1981;1(1):95–128. doi: 10.1016/s0174-173x(80)80011-2. [DOI] [PubMed] [Google Scholar]
  22. Ruoslahti E., Vuento M., Engvall E. Interaction of fibronectin with antibodies and collagen in radioimmunoassay. Biochim Biophys Acta. 1978 Jun 21;534(2):210–218. doi: 10.1016/0005-2795(78)90003-x. [DOI] [PubMed] [Google Scholar]
  23. Solter D., Knowles B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A. 1978 Nov;75(11):5565–5569. doi: 10.1073/pnas.75.11.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  26. Wewer U., Albrechtsen R., Ruoslahti E. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor. Cancer Res. 1981 Apr;41(4):1518–1524. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES