Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Jul 1;97(1):224–234. doi: 10.1083/jcb.97.1.224

Stimulation and inhibition of secretion in Paramecium: role of divalent cations

PMCID: PMC2112499  PMID: 6408101

Abstract

The effects of Ca2+ and Mg2+ on exocytosis in Paramecium tetraurelia cells were examined with light microscopy, freeze fracture (FEM) and transmission electron microscopy (TEM) of thin-sectioned embedded cells. Picric acid-Ca2+-induced secretion in wild type (wt) cells was captured by "quick" fixation with OsO4, and TEM demonstrated membrane fusion occurring before trichocyst matrix (tmx) expansion. Cells stimulated with picric acid in the presence of high extracellular Mg2+ showed very few sites of membrane fusion and no tmx expansion, suggesting that Ca2+ is required for both membrane fusion and tmx expansion. Further information was obtained by comparing secretory responses of wt cells with a temperature-sensitive secretory mutant, nd 9. These cells when grown at the permissive temperature (18 degrees C) possess normal rosettes at the secretory site and secrete in response to picric acid-Ca2+, but when grown at 27 degrees C they lack rosettes and do not secrete (Beisson, J., M. Lefort-Tran, M. Pouphile, M. Rossignol, and B. Satir, 1976, J. Cell Biol., 69:126-143). Quantitation of picric acid-Ca2+-induced secretion revealed that: (a) the number of tmx secreted by wt and nd 9 cells was independent of their cultural growth phase, (b) wt cells secreted the same number of tmx when grown either at 18 or 27 degrees C, and (c) nd 9 18 degrees C cells secreted the same number of tmx as wt 18 or 27 degrees C cells. Wild type and nd 9 cells had the same frequencies of occupied and unoccupied secretory sites as determined by quantitative analysis of freeze-fracture replicas. After stimulation with divalent cation ionophore A23187 and Ca2+, wt cells showed a significant reduction in the frequency of occupied sites. FEM and TEM studies revealed that A23187-Ca2+ induced tmx expansion and normal fusion of the plasma and trichocyst membranes in wt and nd 9 18 degrees C cells, but induced tmx expansion without concomitant membrane fusion in nd 9 27 degrees C cells. The lack of membrane fusion in nd 9 27 degrees C cells suggests that the molecules represented by rosette particles are required specifically for membrane fusion.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews D., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. II. Phospholipids of ciliary and other membranes. Biochim Biophys Acta. 1979 Jan 19;550(2):174–187. doi: 10.1016/0005-2736(79)90205-0. [DOI] [PubMed] [Google Scholar]
  2. Bannister L. H. The structure of trichocysts in Paramecium caudatum. J Cell Sci. 1972 Nov;11(3):899–929. doi: 10.1242/jcs.11.3.899. [DOI] [PubMed] [Google Scholar]
  3. Beisson J., Cohen J., Lefort-Tran M., Pouphile M., Rossignol M. Control of membrane fusion in exocytosis. Physiological studies on a Paramecium mutant blocked in the final step of the trichocyst extrusion process. J Cell Biol. 1980 May;85(2):213–227. doi: 10.1083/jcb.85.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beisson J., Lefort-Tran M., Pouphile M., Rossignol M., Satir B. Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains. J Cell Biol. 1976 Apr;69(1):126–143. doi: 10.1083/jcb.69.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bilinski M., Plattner H., Matt H. Secretory protein decondensation as a distinct, Ca2+-mediated event during the final steps of exocytosis in Paramecium cells. J Cell Biol. 1981 Jan;88(1):179–188. doi: 10.1083/jcb.88.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Douglas W. W. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol. 1968 Nov;34(3):451–474. doi: 10.1111/j.1476-5381.1968.tb08474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garofalo R. S., Gilligan D. M., Satir B. H. Calmodulin antagonists inhibit secretion in Paramecium. J Cell Biol. 1983 Apr;96(4):1072–1081. doi: 10.1083/jcb.96.4.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilligan D. M., Satir B. H. Protein phosphorylation/dephosphorylation and stimulus-secretion coupling in wild type and mutant Paramecium. J Biol Chem. 1982 Dec 10;257(23):13903–13906. [PubMed] [Google Scholar]
  9. Maihle N. J., Dedman J. R., Means A. R., Chafouleas J. G., Satir B. H. Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia. J Cell Biol. 1981 Jun;89(3):695–699. doi: 10.1083/jcb.89.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Matt H., Bilinski M., Plattner H. Adenosinetriphosphate, calcium and temperature requirements for the final steps of exocytosis in Paramecium cells. J Cell Sci. 1978 Aug;32:67–86. doi: 10.1242/jcs.32.1.67. [DOI] [PubMed] [Google Scholar]
  11. Matt H., Plattner H., Reichel K., Lefort-Tran M., Beisson J. Genetic dissection of the final exocytosis steps in Paramecium tetraurelia cells: trigger analyses. J Cell Sci. 1980 Dec;46:41–60. doi: 10.1242/jcs.46.1.41. [DOI] [PubMed] [Google Scholar]
  12. Plattner H., Fuchs S. X-ray microanalysis of calcium binding sites in Paramecium with special reference to exocytosis. Histochemistry. 1975 Sep 7;45(1):23–47. doi: 10.1007/BF00508049. [DOI] [PubMed] [Google Scholar]
  13. Plattner H. Intramembraneous changes on cationophore-triggered exocytosis in Paramecium. Nature. 1974 Dec 20;252(5485):722–724. doi: 10.1038/252722a0. [DOI] [PubMed] [Google Scholar]
  14. Plattner H., Miller F., Bachmann L. Membrane specializations in the form of regular membrane-to-membrane attachment sites in Paramecium. A correlated freeze-etching and ultrathin-sectioning analysis. J Cell Sci. 1973 Nov;13(3):687–719. doi: 10.1242/jcs.13.3.687. [DOI] [PubMed] [Google Scholar]
  15. Rauh J. J., Nelson D. L. Calmodulin is a major component of extruded trichocysts from Paramecium tetraurelia. J Cell Biol. 1981 Dec;91(3 Pt 1):860–865. doi: 10.1083/jcb.91.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Satir B. H., Garofalo R. S., Gilligan D. M., Maihle N. J. Possible functions of calmodulin in protozoa. Ann N Y Acad Sci. 1980;356:83–91. doi: 10.1111/j.1749-6632.1980.tb29602.x. [DOI] [PubMed] [Google Scholar]
  17. Satir B. H., Oberg S. G. Paramecium fusion rosettes: possible function as Ca2+ gates. Science. 1978 Feb 3;199(4328):536–538. doi: 10.1126/science.341312. [DOI] [PubMed] [Google Scholar]
  18. Satir B. H. The role of local design in membranes. Soc Gen Physiol Ser. 1980;34:45–58. [PubMed] [Google Scholar]
  19. Satir B. H., Wissig S. L. Alveolar sacs of Tetrahymena: ultrastructural characteristics and similarities to subsurface cisterns of muscle and nerve. J Cell Sci. 1982 Jun;55:13–33. doi: 10.1242/jcs.55.1.13. [DOI] [PubMed] [Google Scholar]
  20. Satir B., Schooley C., Satir P. Membrane reorganization during secretion in Tetrahymena. Nature. 1972 Jan 7;235(5332):53–54. doi: 10.1038/235053a0. [DOI] [PubMed] [Google Scholar]
  21. Wunderlich F., Speth V. Membranes in Tetrahymena. I. The cortical pattern. J Ultrastruct Res. 1972 Nov;41(3):258–269. doi: 10.1016/s0022-5320(72)90068-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES