Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Jul 1;97(1):253–257. doi: 10.1083/jcb.97.1.253

Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers

PMCID: PMC2112503  PMID: 6345555

Abstract

In the developing mouse retina degenerating neurons can be observed initially in the ganglion cell layer followed by a phase of cell death in the inner nuclear layer. Using an immunohistochemical method to localize the mouse macrophage specific antigen F4/80, we show that macrophages migrate from the vascular supply overlying the developing retina and phagocytose the degenerating neurons. The macrophages subsequently differentiate to become the microglia of the retina and form a regularly spaced distribution across the retina in the inner and outer plexiform layers. These experiments provide strong evidence for the mesodermal origin of central nervous system microglia.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austyn J. M., Gordon S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol. 1981 Oct;11(10):805–815. doi: 10.1002/eji.1830111013. [DOI] [PubMed] [Google Scholar]
  2. Booz K. H., Felsing T. Uber ein transitorisches, perinatales subependymales Zellsystem der weissen Ratte. Z Anat Entwicklungsgesch. 1973;141(3):275–288. [PubMed] [Google Scholar]
  3. Boycott B. B., Hopkins J. M. Microglia in the retina of monkey and other mammals: its distinction from other types of glia and horizontal cells. Neuroscience. 1981;6(4):679–688. doi: 10.1016/0306-4522(81)90151-2. [DOI] [PubMed] [Google Scholar]
  4. Das G. D. Resting and reactive macrophages in the developing cerebellum: an experimental ultrastructural study. Virchows Arch B Cell Pathol. 1976 May 26;20(4):287–298. doi: 10.1007/BF02890347. [DOI] [PubMed] [Google Scholar]
  5. Dixon R. G., Eng L. F. Glial fibrillary acidic protein in the retina of the developing albino rat: an immunoperoxidase study of paraffin-embedded tissue. J Comp Neurol. 1980 Jan 10;195(2):305–321. doi: 10.1002/cne.901950210. [DOI] [PubMed] [Google Scholar]
  6. Hirsch S., Austyn J. M., Gordon S. Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture. J Exp Med. 1981 Sep 1;154(3):713–725. doi: 10.1084/jem.154.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  8. Hume D. A., Gordon S. Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Identification of resident macrophages in renal medullary and cortical interstitium and the juxtaglomerular complex. J Exp Med. 1983 May 1;157(5):1704–1709. doi: 10.1084/jem.157.5.1704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Imamoto K., Leblond C. P. Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells. J Comp Neurol. 1978 Jul 1;180(1):139–163. doi: 10.1002/cne.901800109. [DOI] [PubMed] [Google Scholar]
  10. Ling E. A., Penney D., Leblond C. P. Use of carbon labeling to demonstrate the role of blood monocytes as precursors of the 'ameboid cells' present in the corpus callosum of postnatal rats. J Comp Neurol. 1980 Oct 1;193(3):631–657. doi: 10.1002/cne.901930304. [DOI] [PubMed] [Google Scholar]
  11. Ling E. A. Some aspects of amoeboid microglia in the corpus callosum and neighbouring regions of neonatal rats. J Anat. 1976 Feb;121(Pt 1):29–45. [PMC free article] [PubMed] [Google Scholar]
  12. Moonen G., Grau-Wagemans M. P., Selak I. Plasminogen activator-plasmin system and neuronal migration. Nature. 1982 Aug 19;298(5876):753–755. doi: 10.1038/298753a0. [DOI] [PubMed] [Google Scholar]
  13. Murabe Y., Sano Y. Morphological studies on neuroglia. VI. Postnatal development of microglial cells. Cell Tissue Res. 1982;225(3):469–485. doi: 10.1007/BF00214798. [DOI] [PubMed] [Google Scholar]
  14. Newman S. L., Henson J. E., Henson P. M. Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J Exp Med. 1982 Aug 1;156(2):430–442. doi: 10.1084/jem.156.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oehmichen M. Are resting and/or reactive microglia macrophages? Immunobiology. 1982 Apr;161(3-4):246–254. doi: 10.1016/S0171-2985(82)80080-6. [DOI] [PubMed] [Google Scholar]
  16. Potts R. A., Dreher B., Bennett M. R. The loss of ganglion cells in the developing retina of the rat. Brain Res. 1982 Mar;255(3):481–486. doi: 10.1016/0165-3806(82)90013-x. [DOI] [PubMed] [Google Scholar]
  17. Sengelaub D. R., Finlay B. L. Cell death in the mammalian visual system during normal development : I. Retinal ganglion cells. J Comp Neurol. 1982 Feb 1;204(4):311–317. doi: 10.1002/cne.902040402. [DOI] [PubMed] [Google Scholar]
  18. Silver J., Hughes A. F. The role of cell death during morphogenesis of the mammalian eye. J Morphol. 1973 Jun;140(2):159–170. doi: 10.1002/jmor.1051400204. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES