Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Jul 1;97(1):166–172. doi: 10.1083/jcb.97.1.166

Evidence for a unique profile of phosphatidylcholine synthesis in late mitotic cells

PMCID: PMC2112504  PMID: 6863389

Abstract

Evidence is presented that the structural rearrangements in late mitosis are accompanied by an alteration in membrane lipid synthesis. This evidence was derived from analyzing phospholipid classes after rapid-labeling, as well as from determining the intracellular site of incorporation of choline by HeLa S3 cells as they progressed from metaphase into early interphase (G1). Compared with postmitotic cell data, the recent mitotic cell data indicate a specific two- to threefold increase in the net synthesis of phosphatidylcholine (PC) species, which appeared to contain the more saturated fatty acids. Since this was observed with glycerol, choline, and orthophosphate labelings, and not with methyl labeling, it appears that the CDP- choline plus diacylglycerol pathway rather than the phosphatidylethanolamine to PC pathway was augmented. Electron microscope autoradiography of anaphase, telophase, and early G1 cells demonstrated that the reformed nuclear envelope was the incorporation site of a significant proportion of the newly synthesized PC. This incorporation occurred by early telophase prior to chromosome decondensation. The potential significance of PC metabolism with regard to membrane rearrangements, such as nuclear envelope reformation, is discussed.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A., Akhtar R. A., Hawthorne J. N. Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P] phosphate. Biochem J. 1977 Jan 15;162(1):61–73. doi: 10.1042/bj1620061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amar A., Rottem S., Razin S. Is the vertical disposition of Mycoplasma membrane proteins affected by membrane fluidity? Biochim Biophys Acta. 1979 Apr 19;552(3):457–467. doi: 10.1016/0005-2736(79)90190-1. [DOI] [PubMed] [Google Scholar]
  3. Arvidson G. A. Structural and metabolic heterogeneity of rat liver glycerophosphatides. Eur J Biochem. 1968 May;4(4):478–486. doi: 10.1111/j.1432-1033.1968.tb00237.x. [DOI] [PubMed] [Google Scholar]
  4. Burger M. M., Bombik B. M., Breckenridge B. M., Sheppard J. R. Growth control and cyclic alterations of cyclic AMP in the cell cycle. Nat New Biol. 1972 Oct 11;239(93):161–163. doi: 10.1038/newbio239161a0. [DOI] [PubMed] [Google Scholar]
  5. Burk K. H., Drewinko B. Cell cycle dependency of tumor antigens. Cancer Res. 1976 Sep;36(9 Pt 2):3535–3538. [PubMed] [Google Scholar]
  6. Conner G. E., Noonan N. E., Noonan K. D. Nuclear envelope of Chinese hamster ovary cells. Re-formation of the nuclear envelope following mitosis. Biochemistry. 1980 Jan 22;19(2):277–289. doi: 10.1021/bi00543a005. [DOI] [PubMed] [Google Scholar]
  7. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  8. Erlandson R. A., de Harven E. The ultrastructure of synchronized HeLa cells. J Cell Sci. 1971 Mar;8(2):353–397. doi: 10.1242/jcs.8.2.353. [DOI] [PubMed] [Google Scholar]
  9. Fulton A. B. How do eucaryotic cells construct their cytoarchitecture? Cell. 1981 Apr;24(1):4–5. doi: 10.1016/0092-8674(81)90493-1. [DOI] [PubMed] [Google Scholar]
  10. Gallaher W. R., Weinstein D. B., Blough H. A. Rapid turnover of principal phospholipids in BHK-21 cells. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1252–1256. doi: 10.1016/0006-291x(73)90635-9. [DOI] [PubMed] [Google Scholar]
  11. Gerace L., Blobel G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. 1980 Jan;19(1):277–287. doi: 10.1016/0092-8674(80)90409-2. [DOI] [PubMed] [Google Scholar]
  12. Hirata F., Axelrod J. Enzymatic methylation of phosphatidylethanolamine increases erythrocyte membrane fluidity. Nature. 1978 Sep 21;275(5677):219–220. doi: 10.1038/275219a0. [DOI] [PubMed] [Google Scholar]
  13. Hodge L. D., Robbins E., Scharff M. D. Persistence of messenger RNA through mitosis in HeLa cells. J Cell Biol. 1969 Feb;40(2):497–507. doi: 10.1083/jcb.40.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KENNEDY E. P., WEISS S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956 Sep;222(1):193–214. [PubMed] [Google Scholar]
  15. ROBBINS E., GONATAS N. K. THE ULTRASTRUCTURE OF A MAMMALIAN CELL DURING THE MITOTIC CYCLE. J Cell Biol. 1964 Jun;21:429–463. doi: 10.1083/jcb.21.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Salpeter M. M., Bachmann L., Salpeter E. E. Resolution in electron microscope radioautography. J Cell Biol. 1969 Apr;41(1):1–32. doi: 10.1083/jcb.41.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scharff M. D., Robbins E. Polyribosome disaggregation during metaphase. Science. 1966 Feb 25;151(3713):992–995. doi: 10.1126/science.151.3713.992. [DOI] [PubMed] [Google Scholar]
  18. Simmons T., Heywood P., Hodge L. D. Intranuclear site of replication of adenovirus DNA. J Mol Biol. 1974 Nov 5;89(3):423–433. doi: 10.1016/0022-2836(74)90473-2. [DOI] [PubMed] [Google Scholar]
  19. Simmons T., Heywood P., Hodge L. Nuclear envelope-associated resumption of RNA synthesis in late mitosis of HeLa cells. J Cell Biol. 1973 Oct;59(1):150–164. doi: 10.1083/jcb.59.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Simmons T., Lipman M., Hodge L. D. Uptake and early fate of metaphase chromosomes ingested by the Wi-L2 human lymphoid cell line. Somatic Cell Genet. 1978 Jan;4(1):55–76. doi: 10.1007/BF01546493. [DOI] [PubMed] [Google Scholar]
  21. Vance D. E., Trip E. M., Paddon H. B. Poliovirus increases phosphatidylcholine biosynthesis in HeLa cells by stimulation of the rate-limiting reaction catalyzed by CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1980 Feb 10;255(3):1064–1069. [PubMed] [Google Scholar]
  22. Virtanen I., Brotherus J., Renkonen O., Wartiovaara J. Phospholipids of outer and inner nuclear membranes in rat liver and BHK-21 cells. Biochem Biophys Res Commun. 1977 May 9;76(1):142–149. doi: 10.1016/0006-291x(77)91679-5. [DOI] [PubMed] [Google Scholar]
  23. Weinstein D. B., Marsh J. B., Glick M. C., Warren L. Membranes of animal cells. VI. The glycolipids of the L cell and its surface membrane. J Biol Chem. 1970 Aug 10;245(15):3928–3937. [PubMed] [Google Scholar]
  24. van den Bosch H. Intracellular phospholipases A. Biochim Biophys Acta. 1980 Sep 30;604(2):191–246. doi: 10.1016/0005-2736(80)90574-x. [DOI] [PubMed] [Google Scholar]
  25. van den Bosch H. Phosphoglyceride metabolism. Annu Rev Biochem. 1974;43(0):243–277. doi: 10.1146/annurev.bi.43.070174.001331. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES