Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Jul 1;97(1):81–91. doi: 10.1083/jcb.97.1.81

Maturation-promoting factor induces nuclear envelope breakdown in cycloheximide-arrested embryos of Xenopus laevis

PMCID: PMC2112507  PMID: 6345556

Abstract

We have studied the effect of maturation-promoting factor (MPF) on embryonic nuclei during the early cleavage stage of Xenopus laevis development. When protein synthesis is inhibited by cycloheximide during this stage, the embryonic cell cycle arrests in an artificially produced G2 phase-like state, after completion of one additional round of DNA synthesis. Approximately 100 nuclei can be arrested in a common cytoplasm if cytokinesis is first inhibited by cytochalasin B. Within 5 min after injection of MPF into such embryos, the nuclear envelope surrounding each nucleus disperses, as determined histologically or by immunofluorescent staining of the nuclear lamina with antilamin antiserum. The breakdown of the nuclear envelope occurs at levels of MPF comparable to or slightly lower than those required for oocyte maturation. Amplification of MPF activity, however, does not occur in the arrested egg as it does in the oocyte. These results suggest that MPF can act to advance interphase nuclei into the first events of mitosis and show that the nuclear lamina responds rapidly to MPF.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benbow R. M., Ford C. C. Cytoplasmic control of nuclear DNA synthesis during early development of Xenopus laevis: a cell-free assay. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2437–2441. doi: 10.1073/pnas.72.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  3. Clark T. G., Merriam R. W. Diffusible and bound actin nuclei of Xenopus laevis oocytes. Cell. 1977 Dec;12(4):883–891. doi: 10.1016/0092-8674(77)90152-0. [DOI] [PubMed] [Google Scholar]
  4. Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature. 1982 Apr 15;296(5858):613–620. doi: 10.1038/296613a0. [DOI] [PubMed] [Google Scholar]
  5. Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
  6. Eckstein F. Investigation of enzyme mechanisms with nucleoside phosphorothioates. Angew Chem Int Ed Engl. 1975 Mar;14(3):160–166. doi: 10.1002/anie.197501601. [DOI] [PubMed] [Google Scholar]
  7. Forbes D. J., Kornberg T. B., Kirschner M. W. Small nuclear RNA transcription and ribonucleoprotein assembly in early Xenopus development. J Cell Biol. 1983 Jul;97(1):62–72. doi: 10.1083/jcb.97.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gerace L., Blobel G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. 1980 Jan;19(1):277–287. doi: 10.1016/0092-8674(80)90409-2. [DOI] [PubMed] [Google Scholar]
  9. Gerace L., Blum A., Blobel G. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J Cell Biol. 1978 Nov;79(2 Pt 1):546–566. doi: 10.1083/jcb.79.2.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giloh H., Sedat J. W. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science. 1982 Sep 24;217(4566):1252–1255. doi: 10.1126/science.7112126. [DOI] [PubMed] [Google Scholar]
  11. Hammer M. G., Sheridan J. D., Estensen R. D. Cytochalasin B II: selective inhibition of cytokinesis in Xenopus laevis eggs. Proc Soc Exp Biol Med. 1971 Apr;136(4):1158–1162. doi: 10.3181/00379727-136-35450. [DOI] [PubMed] [Google Scholar]
  12. Hara K., Tydeman P., Kirschner M. A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. Proc Natl Acad Sci U S A. 1980 Jan;77(1):462–466. doi: 10.1073/pnas.77.1.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harland R. M., Laskey R. A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell. 1980 Oct;21(3):761–771. doi: 10.1016/0092-8674(80)90439-0. [DOI] [PubMed] [Google Scholar]
  14. Heidemann S. R., Kirschner M. W. Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies. J Cell Biol. 1975 Oct;67(1):105–117. doi: 10.1083/jcb.67.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kishimoto T., Kuriyama R., Kondo H., Kanatani H. Generality of the action of various maturation-promoting factors. Exp Cell Res. 1982 Jan;137(1):121–126. doi: 10.1016/0014-4827(82)90014-3. [DOI] [PubMed] [Google Scholar]
  16. Krohne G., Franke W. W., Ely S., D'Arcy A., Jost E. Localization of a nuclear envelope-associated protein by indirect immunofluorescence microscopy using antibodies against a major polypeptide from rat liver fractions enriched in nuclear envelope-associated material. Cytobiologie. 1978 Oct;18(1):22–38. [PubMed] [Google Scholar]
  17. Lamb M. M., Laird C. D. Increase in nuclear poly(A)-containing RNA at syncytial blastoderm in Drosophila melanogaster embryos. Dev Biol. 1976 Aug;52(1):31–42. doi: 10.1016/0012-1606(76)90004-x. [DOI] [PubMed] [Google Scholar]
  18. Landström U., Lovtrup S. Deoxynucleoside inhibition of differentiation in cultured embryonic cells. Exp Cell Res. 1977 Aug;108(1):201–206. [PubMed] [Google Scholar]
  19. Maller J. L., Krebs E. G. Progesterone-stimulated meiotic cell division in Xenopus oocytes. Induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1977 Mar 10;252(5):1712–1718. [PubMed] [Google Scholar]
  20. Maller J., Wu M., Gerhart J. C. Changes in protein phosphorylation accompanying maturation of Xenopus laevis oocytes. Dev Biol. 1977 Jul 15;58(2):295–312. doi: 10.1016/0012-1606(77)90093-8. [DOI] [PubMed] [Google Scholar]
  21. Masui Y., Clarke H. J. Oocyte maturation. Int Rev Cytol. 1979;57:185–282. doi: 10.1016/s0074-7696(08)61464-3. [DOI] [PubMed] [Google Scholar]
  22. Masui Y., Markert C. L. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool. 1971 Jun;177(2):129–145. doi: 10.1002/jez.1401770202. [DOI] [PubMed] [Google Scholar]
  23. Nelkin B., Nichols C., Vogelstein B. Protein factor(s) from mitotic CHO cells induce meiotic maturation in Xenopus laevis oocytes. FEBS Lett. 1980 Jan 14;109(2):233–238. doi: 10.1016/0014-5793(80)81094-5. [DOI] [PubMed] [Google Scholar]
  24. Newport J., Kirschner M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell. 1982 Oct;30(3):675–686. doi: 10.1016/0092-8674(82)90272-0. [DOI] [PubMed] [Google Scholar]
  25. Pestell R. Q. Microtubule protein synthesis during oogenesis and early embryogenesis in Xenopus laevis. Biochem J. 1975 Mar;145(3):527–534. doi: 10.1042/bj1450527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reynhout J. K., Smith L. D. Studies on the appearance and nature of a maturation-inducing factor in the cytoplasm of amphibian oocytes exposed to progesterone. Dev Biol. 1974 Jun;38(2):394–400. doi: 10.1016/0012-1606(74)90016-5. [DOI] [PubMed] [Google Scholar]
  27. Smith L. D., Ecker R. E. Role of the oocyte nucleus in physiological maturation in Rana pipiens. Dev Biol. 1969 Mar;19(3):281–309. doi: 10.1016/0012-1606(69)90065-7. [DOI] [PubMed] [Google Scholar]
  28. Stick R., Krohne G. Immunological localization of the major architectural protein associated with the nuclear envelope of the Xenopus laevis oocyte. Exp Cell Res. 1982 Apr;138(2):319–313. doi: 10.1016/0014-4827(82)90181-1. [DOI] [PubMed] [Google Scholar]
  29. Sunkara P. S., Wright D. A., Rao P. N. Mitotic factors from mammalian cells: a preliminary characterization. J Supramol Struct. 1979;11(2):189–195. doi: 10.1002/jss.400110208. [DOI] [PubMed] [Google Scholar]
  30. Wasserman W. J., Masui Y. Effects of cyclohexamide on a cytoplasmic factor initiating meiotic naturation in Xenopus oocytes. Exp Cell Res. 1975 Mar 15;91(2):381–388. doi: 10.1016/0014-4827(75)90118-4. [DOI] [PubMed] [Google Scholar]
  31. Wasserman W. J., Smith L. D. Calmodulin triggers the resumption of meiosis in amphibian oocytes. J Cell Biol. 1981 Jun;89(3):389–394. doi: 10.1083/jcb.89.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Woodland H. R., Adamson E. D. The synthesis and storage of histones during the oogenesis of Xenopus laevis. Dev Biol. 1977 May;57(1):118–135. doi: 10.1016/0012-1606(77)90359-1. [DOI] [PubMed] [Google Scholar]
  33. Wu M., Gerhart J. C. Partial purification and characterization of the maturation-promoting factor from eggs of Xenopus laevis. Dev Biol. 1980 Oct;79(2):465–477. doi: 10.1016/0012-1606(80)90131-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES