Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Aug 1;97(2):447–454. doi: 10.1083/jcb.97.2.447

Capping of cholera toxin-ganglioside GM1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin

PMCID: PMC2112526  PMID: 6684122

Abstract

We used cholera toxin, which binds exclusively and with a high affinity to the ganglioside GM1, as a probe to investigate the distribution of this glycolipid on the surface of mouse lymphocytes. When lymphocytes are incubated with cholera toxin (or its B subunit) and then sequentially with horse anti-toxin and FITC-swine anti-horse Ig at 37 degrees C, the cholera toxin-ganglioside GM1 complex is redistributed to a cap at one pole of the cell. The capping of cholera toxin-GM1 complexes is slower than the capping of surface-Ig complexes, requires two antibodies, and is inhibited at high toxin concentrations. Cholera toxin-GM1, like surface-Ig capping, is an energy-dependent process and is inhibited by sodium azide, low temperatures, or cytochalasin B, but is unaffected by demecolcine. An affinity-purified antibody against alpha-actinin was used to examine the distribution of this cytoskeletal component during the capping process. 88% of the cells that had a surface Ig cap displayed a co-cap of alpha-actinin, and 57% of the cells that had a cholera toxin-GM1 cap displayed a co-cap of alpha- actinin. Time course studies revealed similar kinetics of external ligand cap formation and the formation of alpha-actinin co-caps. We conclude that capping of a cell-surface glycolipid is associated with a reorganization of the underlying cytoskeleton. The implications of such an association are discussed in the context of current models of the mechanism of capping.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckner S. K., Brady R. O., Fishman P. H. Reevaluation of the role of gangliosides in the binding and action of thyrotropin. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4848–4852. doi: 10.1073/pnas.78.8.4848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Ze'ev A., Duerr A., Solomon F., Penman S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell. 1979 Aug;17(4):859–865. doi: 10.1016/0092-8674(79)90326-x. [DOI] [PubMed] [Google Scholar]
  3. Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourguignon L. Y., Tokuyasu K. T., Singer S. J. The capping of lymphocytes and other cells, studied by an improved method for immunofluorescence staining of frozen sections. J Cell Physiol. 1978 Jun;95(3):239–257. doi: 10.1002/jcp.1040950302. [DOI] [PubMed] [Google Scholar]
  5. Brandtzaeg P. Conjugates of immunoglobulin G with different fluorochromes. I. Characterization by anionic-exchange chromatography. Scand J Immunol. 1973;2(3):273–290. doi: 10.1111/j.1365-3083.1973.tb02037.x. [DOI] [PubMed] [Google Scholar]
  6. Braun J., Fujiwara K., Pollard T. D., Unanue E. R. Two distinct mechanisms for redistribution of lymphocyte surface macromolecules. I. Relationship to cytoplasmic myosin. J Cell Biol. 1978 Nov;79(2 Pt 1):409–418. doi: 10.1083/jcb.79.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Braun J., Hochman P. S., Unanue E. R. Ligand-induced association of surface immunoglobulin with the detergent-insoluble cytoskeletal matrix of the B lymphocyte. J Immunol. 1982 Mar;128(3):1198–1204. [PubMed] [Google Scholar]
  8. Bretscher M. S. Directed lipid flow in cell membranes. Nature. 1976 Mar 4;260(5546):21–23. doi: 10.1038/260021a0. [DOI] [PubMed] [Google Scholar]
  9. Burridge K. Direct identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels. Methods Enzymol. 1978;50:54–64. doi: 10.1016/0076-6879(78)50007-4. [DOI] [PubMed] [Google Scholar]
  10. Burridge K., McCullough L. The association of alpha-actinin with the plasma membrane. J Supramol Struct. 1980;13(1):53–65. doi: 10.1002/jss.400130106. [DOI] [PubMed] [Google Scholar]
  11. Corps A. N., Metcalfe J. C., Pozzan T. Kinetic evidence for a common mechanism of capping on lymphocytes. Biochem J. 1982 Apr 15;204(1):229–237. doi: 10.1042/bj2040229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Craig S. W., Cuatrecasas P. Mobility of cholera toxin receptors on rat lymphocyte membranes. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3844–3848. doi: 10.1073/pnas.72.10.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Critchley D. R., Ansell S., Perkins R., Dilks S., Ingram J. Isolation of cholera toxin receptors from a mouse fibroblast and lymphoid cell line by immune precipitation. J Supramol Struct. 1979;12(2):273–291. doi: 10.1002/jss.400120211. [DOI] [PubMed] [Google Scholar]
  14. Critchley D. R., Magnani J. L., Fishman P. H. Interaction of cholera toxin with rat intestinal brush border membranes. Relative roles of gangliosides and galactoproteins as toxin receptors. J Biol Chem. 1981 Aug 25;256(16):8724–8731. [PubMed] [Google Scholar]
  15. Critchley D. R., Streuli C. H., Kellie S., Ansell S., Patel B. Characterization of the cholera toxin receptor on Balb/c 3T3 cells as a ganglioside similar to, or identical with, ganglioside GM1. No evidence for galactoproteins with receptor activity. Biochem J. 1982 Apr 15;204(1):209–219. doi: 10.1042/bj2040209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feramisco J. R., Burridge K. A rapid purification of alpha-actinin, filamin, and a 130,000-dalton protein from smooth muscle. J Biol Chem. 1980 Feb 10;255(3):1194–1199. [PubMed] [Google Scholar]
  17. Fishman P. H. Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol. 1982;69(2):85–97. doi: 10.1007/BF01872268. [DOI] [PubMed] [Google Scholar]
  18. Gabbiani G., Chaponnier C., Zumbe A., Vassalli P. Actin and tubulin co-cap with surface immunoglobulins in mouse B lymphocytes. Nature. 1977 Oct 20;269(5630):697–698. doi: 10.1038/269697a0. [DOI] [PubMed] [Google Scholar]
  19. Geiger B., Singer S. J. The participation of alpha-actinin in the capping of cell membrane components. Cell. 1979 Jan;16(1):213–222. doi: 10.1016/0092-8674(79)90202-2. [DOI] [PubMed] [Google Scholar]
  20. Hagmann J., Fishman P. H. Detergent extraction of cholera toxin and gangliosides from cultured cells and isolated membranes. Biochim Biophys Acta. 1982 Apr 29;720(2):181–187. doi: 10.1016/0167-4889(82)90010-6. [DOI] [PubMed] [Google Scholar]
  21. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  22. Hanaoka F., Shaw J. L., Mueller G. C. Recovery of functional proteins from sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1979 Oct 15;99(1):170–174. doi: 10.1016/0003-2697(79)90059-9. [DOI] [PubMed] [Google Scholar]
  23. Hoessli D., Rungger-Brändle E., Jockusch B. M., Gabbiani G. Lymphocyte alpha-actinin. Relationship to cell membrane and co-capping with surface receptors. J Cell Biol. 1980 Feb;84(2):305–314. doi: 10.1083/jcb.84.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kellie S., Evans C. W. Changes in lymphocyte adhesiveness during contact sensitization. Br J Exp Pathol. 1981 Apr;62(2):158–164. [PMC free article] [PubMed] [Google Scholar]
  25. Kümel G., Daus H., Mauch H. Improved method for the cyanogen bromide activation of agarose beads. J Chromatogr. 1979 Apr 21;172:221–226. doi: 10.1016/s0021-9673(00)90957-9. [DOI] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Laub F., Kaplan M., Gitler C. Actin polymerization accompanies Thy-1-capping on mouse thymocytes. FEBS Lett. 1981 Feb 9;124(1):35–38. doi: 10.1016/0014-5793(81)80048-8. [DOI] [PubMed] [Google Scholar]
  28. Lazarides E., Burridge K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell. 1975 Nov;6(3):289–298. doi: 10.1016/0092-8674(75)90180-4. [DOI] [PubMed] [Google Scholar]
  29. Lingwood C. A., Hakomori S., Ji T. H. A glycolipid and its associated proteins: evidence by crosslinking of human erythrocyte surface components. FEBS Lett. 1980 Apr 7;112(2):265–268. doi: 10.1016/0014-5793(80)80194-3. [DOI] [PubMed] [Google Scholar]
  30. Loor F. Plasma membrane and cell cortex interactions in lymphocyte functions. Adv Immunol. 1980;30:1–120. doi: 10.1016/s0065-2776(08)60194-7. [DOI] [PubMed] [Google Scholar]
  31. Oliver J. M., Berlin R. D. Mechanisms that regulate the structural and functional architecture of cell surfaces. Int Rev Cytol. 1982;74:55–94. doi: 10.1016/s0074-7696(08)61169-9. [DOI] [PubMed] [Google Scholar]
  32. Pacuszka T., Osborne J. C., Jr, Brady R. O., Fishman P. H. Interaction of human chorionic gonadotropin with membrane components of rat testes. Proc Natl Acad Sci U S A. 1978 Feb;75(2):764–768. doi: 10.1073/pnas.75.2.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Révész T., Greaves M. Ligand-induced redistribution of lymphocyte membrane ganglioside GM1. Nature. 1975 Sep 11;257(5522):103–106. doi: 10.1038/257103a0. [DOI] [PubMed] [Google Scholar]
  34. Sahyoun N., Shatila T., LeVine H., 3rd, Cuatrecasas P. Skeletal association of the cholera toxin receptor in rat erythrocytes. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1216–1222. doi: 10.1016/s0006-291x(81)80141-6. [DOI] [PubMed] [Google Scholar]
  35. Schreiner G. F., Fujiwara K., Pollard T. D., Unanue E. R. Redistribution of myosin accompanying capping of surface Ig. J Exp Med. 1977 May 1;145(5):1393–1398. doi: 10.1084/jem.145.5.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schreiner G. F., Unanue E. R. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv Immunol. 1976;24:37–165. doi: 10.1016/s0065-2776(08)60329-6. [DOI] [PubMed] [Google Scholar]
  37. Schroit A. J., Pagano R. E. Capping of a phospholipid analog in the plasma membrane of lymphocytes. Cell. 1981 Jan;23(1):105–112. doi: 10.1016/0092-8674(81)90275-0. [DOI] [PubMed] [Google Scholar]
  38. Sela B. A., Raz A., Geiger B. Antibodies to ganglioside GM1 induce mitogenic stimulation and cap formation in rat thymocytes. Eur J Immunol. 1978 Apr;8(4):268–274. doi: 10.1002/eji.1830080410. [DOI] [PubMed] [Google Scholar]
  39. Sheterline P., Hopkins C. R. Transmembrane linkage between surface glycoproteins and components of the cytoplasm in neutrophil leukocytes. J Cell Biol. 1981 Sep;90(3):743–754. doi: 10.1083/jcb.90.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Spiegel S., Wilchek M. Membrane sialoglycolipids emerging as possible signal transducers for lymphocyte stimulation. J Immunol. 1981 Aug;127(2):572–575. [PubMed] [Google Scholar]
  41. Stern P. L., Bretscher M. S. Capping of exogenous Forssman glycolipid on cells. J Cell Biol. 1979 Sep;82(3):829–833. doi: 10.1083/jcb.82.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Streuli C. H., Patel B., Critchley D. R. The cholera toxin receptor ganglioside GM remains associated with triton X-100 cytoskeletons of BALB/c-3T3 cells. Exp Cell Res. 1981 Dec;136(2):247–254. doi: 10.1016/0014-4827(81)90002-1. [DOI] [PubMed] [Google Scholar]
  43. Toh B. H., Hard C. C. Actin co-caps with concanavalin A receptors. Nature. 1977 Oct 20;269(5630):695–697. doi: 10.1038/269695a0. [DOI] [PubMed] [Google Scholar]
  44. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Unanue E. R., Perkins W. D., Karnovsky M. J. Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography. J Exp Med. 1972 Oct 1;136(4):885–906. doi: 10.1084/jem.136.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Watanabe K., Hakomori S., Powell M. E., Yokota M. The amphipathic membrane proteins associated with gangliosides: the Paul-Bunnel antigen is one of the gangliophilic proteins. Biochem Biophys Res Commun. 1980 Jan 29;92(2):638–646. doi: 10.1016/0006-291x(80)90381-2. [DOI] [PubMed] [Google Scholar]
  47. de Petris S. Preferential distribution of surface immunoglobulins on microvilli. Nature. 1978 Mar 2;272(5648):66–68. doi: 10.1038/272066a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES