Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Aug 1;97(2):566–570. doi: 10.1083/jcb.97.2.566

Nonlysosomal vesicles (acidosomes) are involved in phagosome acidification in Paramecium

PMCID: PMC2112527  PMID: 6885911

Abstract

Although acidification of phagocytic vacuoles has received a broadened interest with the development of pH-sensitive fluorescent probes to follow the pH changes of vacuoles and acidic vesicles in living cells, the mechanism responsible for the acidification of such vacuoles still remains in doubt. In previous studies of the digestive vacuole system in the ciliate Paramecium caudatum we observed and described a unique population of apparently nonlysosomal vesicles that quickly fused with the newly released vacuole before the vacuole became acid and before lysosomes fused with the vacuole. In this paper we report the following: (a) these vesicles, named acidosomes, are devoid of acid phosphatase; (b) these vesicles accumulate neutral red as well as acridine orange, two observations that demonstrate their acid content; (c) cytochalasin B given 15 s after exposure of the cells to indicator dye-stained yeast will inhibit the acidification of yeast-containing vacuoles; and that (d) we observed using electron microscopy, that fusion of acidosomes with the vacuole is inhibited by cytochalasin B. We conclude that the mechanism for acidification of phagocytic vacuoles in Paramecium resides, at least partially if not entirely, in the acidosomes.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C., YOUNG M. R. UPTAKE OF DYES AND DRUGS BY LIVING CELLS IN CULTURE. Life Sci. 1964 Dec;3:1407–1414. doi: 10.1016/0024-3205(64)90082-7. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D., Fok A. K. Membrane recycling and endocytosis in Paramecium confirmed by horseradish peroxidase pulse-chase studies. J Cell Sci. 1980 Oct;45:131–145. doi: 10.1242/jcs.45.1.131. [DOI] [PubMed] [Google Scholar]
  3. Allen R. D., Fok A. K. Phagosome fusion vesicles of Paramecium. II. Freeze-fracture evidence for membrane replacement. Eur J Cell Biol. 1983 Jan;29(2):159–165. [PubMed] [Google Scholar]
  4. Allen R. D., Fok A. K. Phagosome fusion vesicles of paramecium. I. Thin-section morphology. Eur J Cell Biol. 1983 Jan;29(2):150–158. [PubMed] [Google Scholar]
  5. Allen R. D. Food vacuole membrane growth with microtubule-associated membrane transport in Paramecium. J Cell Biol. 1974 Dec;63(3):904–922. doi: 10.1083/jcb.63.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Allen R. D., Staehelin L. A. Digestive system membranes: freeze-fracture evidence for differentiation and flow in Paramecium. J Cell Biol. 1981 Apr;89(1):9–20. doi: 10.1083/jcb.89.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bowers B. A morphological study of plasma and phagosome membranes during endocytosis in Acanthamoeba. J Cell Biol. 1980 Feb;84(2):246–260. doi: 10.1083/jcb.84.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bulychev A., Trouet A., Tulkens P. Uptake and intracellular distribution of neutral red in cultured fibroblasts. Exp Cell Res. 1978 Sep;115(2):343–355. doi: 10.1016/0014-4827(78)90288-4. [DOI] [PubMed] [Google Scholar]
  9. Esteve J. C. Distribution of acid phosphatase in Paramecium caudatum: its relations with the process of digestion. J Protozool. 1970 Feb;17(1):24–35. doi: 10.1111/j.1550-7408.1970.tb05155.x. [DOI] [PubMed] [Google Scholar]
  10. Fok A. K., Allen R. D. Axenic Paramecium caudatum. I. Mass culture and structure. J Protozool. 1979 Aug;26(3):463–470. doi: 10.1111/j.1550-7408.1979.tb04654.x. [DOI] [PubMed] [Google Scholar]
  11. Fok A. K., Allen R. D. Axenic Paramecium caudatum. II. Changes in fine structure with culture age. Eur J Cell Biol. 1981 Aug;25(1):182–192. [PubMed] [Google Scholar]
  12. Geisow M. J., D'Arcy Hart P., Young M. R. Temporal changes of lysosome and phagosome pH during phagolysosome formation in macrophages: studies by fluorescence spectroscopy. J Cell Biol. 1981 Jun;89(3):645–652. doi: 10.1083/jcb.89.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heiple J. M., Taylor D. L. pH changes in pinosomes and phagosomes in the ameba, Chaos carolinensis. J Cell Biol. 1982 Jul;94(1):143–149. doi: 10.1083/jcb.94.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kielian M. C., Cohn Z. A. Phagosome-lysosome fusion. Characterization of intracellular membrane fusion in mouse macrophages. J Cell Biol. 1980 Jun;85(3):754–765. doi: 10.1083/jcb.85.3.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ohkuma S., Moriyama Y., Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. doi: 10.1073/pnas.79.9.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Poole B., Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981 Sep;90(3):665–669. doi: 10.1083/jcb.90.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schneider D. L. ATP-dependent acidification of intact and disrupted lysosomes. Evidence for an ATP-driven proton pump. J Biol Chem. 1981 Apr 25;256(8):3858–3864. [PubMed] [Google Scholar]
  20. Segal A. W., Geisow M., Garcia R., Harper A., Miller R. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature. 1981 Apr 2;290(5805):406–409. doi: 10.1038/290406a0. [DOI] [PubMed] [Google Scholar]
  21. Silverstein S. C., Steinman R. M., Cohn Z. A. Endocytosis. Annu Rev Biochem. 1977;46:669–722. doi: 10.1146/annurev.bi.46.070177.003321. [DOI] [PubMed] [Google Scholar]
  22. Tycko B., Maxfield F. R. Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin. Cell. 1982 Mar;28(3):643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  23. de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES