Abstract
The Madin-Darby canine kidney (MDCK) cell line, derived from distal tubule/collecting duct, expresses differentiated properties of renal tubule epithelium in culture. We studied the expression of adrenergic receptors in MDCK to examine the role of catecholamines in the regulation of renal function. Radioligand-binding studies demonstrated, on the basis of receptor affinities of subtype-selective adrenergic agonists and antagonists, that MDCK cells have both alpha 1- and beta 2- adrenergic receptors. To determine whether these receptor types were expressed by the same cell, we developed a number of clonal MDCK cell lines. The clonal lines had stable but unique morphologies reflecting heterogeneity in the parent cell line. Some clones expressed only beta 2-adrenergic receptors and were nonmotile, whereas others expressed both alpha 1- and beta 2-receptors and demonstrated motility on the culture substrate at low cell densities. In one clone, alpha- and beta- receptor expression was stable for more than 50 passages. Catecholamine agonists increased phosphatidylinositol turnover by activating alpha- adrenergic receptors and cellular cyclic adenosine monophosphate accumulation by activating beta-adrenergic receptors. Guanine nucleotide decreased the affinity of isoproterenol for the beta 2- receptor but did not alter the affinity of epinephrine for the alpha 1- receptor. These results show that alpha 1- and beta 2-receptors can be expressed by a single renal tubular cell and that the two receptors behave as distinct entities in terms of cellular response and receptor regulation. Heterogeneity of adrenergic receptor expression in MDCK clones may reflect properties of different types of renal tubule cells.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barajas L. Innervation of the renal cortex. Fed Proc. 1978 Apr;37(5):1192–1201. [PubMed] [Google Scholar]
- Brown C. D., Simmons N. L. K+ transport in 'tight' epithelial monolayers of MDCK cells. Evidence for a calcium-activated K+ channel. Biochim Biophys Acta. 1982 Aug 25;690(1):95–105. doi: 10.1016/0005-2736(82)90243-7. [DOI] [PubMed] [Google Scholar]
- Corwin E. J., Cho K. W., Malvin R. L. Temperature-induced conversion of the renal adrenoreceptor: modulating renin release. Am J Physiol. 1982 Jul;243(1):F23–F28. doi: 10.1152/ajprenal.1982.243.1.F23. [DOI] [PubMed] [Google Scholar]
- Engel G., Hoyer D., Berthold R., Wagner H. (+/-)[125Iodo] cyanopindolol, a new ligand for beta-adrenoceptors: identification and quantitation of subclasses of beta-adrenoceptors in guinea pig. Naunyn Schmiedebergs Arch Pharmacol. 1981;317(4):277–285. doi: 10.1007/BF00501307. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Molecular mechanisms involved in alpha-adrenergic responses. Mol Cell Endocrinol. 1981 Sep;23(3):233–264. doi: 10.1016/0303-7207(81)90123-4. [DOI] [PubMed] [Google Scholar]
- Gaush C. R., Hard W. L., Smith T. F. Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med. 1966 Jul;122(3):931–935. doi: 10.3181/00379727-122-31293. [DOI] [PubMed] [Google Scholar]
- Glossmann H., Lübbecke F., Bellemann P., Presek P. Cation sensitivity of [125I]heat binding to alpha 1-adrenoceptors in rat cerebral cortex membranes. Eur J Pharmacol. 1981 Oct 22;75(2-3):149–153. doi: 10.1016/0014-2999(81)90076-5. [DOI] [PubMed] [Google Scholar]
- Goodhardt M., Ferry N., Geynet P., Hanoune J. Hepatic alpha 1-adrenergic receptors show agonist-specific regulation by guanine nucleotides. Loss of nucleotide effect after adrenalectomy. J Biol Chem. 1982 Oct 10;257(19):11577–11583. [PubMed] [Google Scholar]
- Handler J. S., Perkins F. M., Johnson J. P. Studies of renal cell function using cell culture techniques. Am J Physiol. 1980 Jan;238(1):F1–F9. doi: 10.1152/ajprenal.1980.238.1.F1. [DOI] [PubMed] [Google Scholar]
- Herzlinger D. A., Easton T. G., Ojakian G. K. The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule. J Cell Biol. 1982 May;93(2):269–277. doi: 10.1083/jcb.93.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes R. J., Boyle M. R., Brown R. D., Taylor P., Insel P. A. Characterization of coexisting alpha 1- and beta 2-adrenergic receptors on a cloned muscle cell line, BC3H-1. Mol Pharmacol. 1982 Sep;22(2):258–266. [PubMed] [Google Scholar]
- Insel P. A., Koachman A. M. Cytochalasin B enhances hormone and cholera toxin-stimulated cyclic AMP accumulation in S49 lymphoma cells. J Biol Chem. 1982 Aug 25;257(16):9717–9723. [PubMed] [Google Scholar]
- Insel P. A., Snavely M. D. Catecholamines and the kidney: receptors and renal function. Annu Rev Physiol. 1981;43:625–636. doi: 10.1146/annurev.ph.43.030181.003205. [DOI] [PubMed] [Google Scholar]
- Kunos G. Adrenoceptors. Annu Rev Pharmacol Toxicol. 1978;18:291–311. doi: 10.1146/annurev.pa.18.040178.001451. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lever J. E. Regulation of dome formation in kidney epithelial cell cultures. Ann N Y Acad Sci. 1981;372:371–383. doi: 10.1111/j.1749-6632.1981.tb15489.x. [DOI] [PubMed] [Google Scholar]
- Levine L., Moskowitz M. A. Alpha- and beta-adrenergic stimulation of arachidonic acid metabolism in cells in culture. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6632–6636. doi: 10.1073/pnas.76.12.6632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis M. G., Spector A. A. Differences in types of prostaglandins produced by two MOCK canine kidney cell sublines. Prostaglandins. 1981 Jun;21(6):1025–1032. doi: 10.1016/0090-6980(81)90170-2. [DOI] [PubMed] [Google Scholar]
- Maleque A., Endou H., Koseki C., Sakai F. Nephron heterogeneity: gluconeogenesis from pyruvate in rabbit nephron. FEBS Lett. 1980 Jul 28;116(2):154–156. doi: 10.1016/0014-5793(80)80631-4. [DOI] [PubMed] [Google Scholar]
- McPherson G. A., Summers R. J. A study of alpha 1-adrenoceptors in rat renal cortex: comparison of [3H]-prazosin binding with the alpha 1-adrenoceptor modulating gluconeogenesis under physiological conditions. Br J Pharmacol. 1982 Sep;77(1):177–184. doi: 10.1111/j.1476-5381.1982.tb09284.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss N. G. Renal function and renal afferent and efferent nerve activity. Am J Physiol. 1982 Nov;243(5):F425–F433. doi: 10.1152/ajprenal.1982.243.5.F425. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Parsons J. G., Patton S. Two-dimensional thin-layer chromatography of polar lipids from milk and mammary tissue. J Lipid Res. 1967 Nov;8(6):696–698. [PubMed] [Google Scholar]
- Rindler M. J., Chuman L. M., Shaffer L., Saier M. H., Jr Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK). J Cell Biol. 1979 Jun;81(3):635–648. doi: 10.1083/jcb.81.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitz J. M., Graham R. M., Sagalowsky A., Pettinger W. A. Renal alpha-1 and alpha-2 adrenergic receptors: biochemical and pharmacological correlations. J Pharmacol Exp Ther. 1981 Nov;219(2):400–406. [PubMed] [Google Scholar]
- Snavely M. D., Insel P. A. Characterization of alpha-adrenergic receptor subtypes in the rat renal cortex. Differential regulation of alpha 1- and alpha 2-adrenergic receptors by guanyl nucleotides and Na. Mol Pharmacol. 1982 Nov;22(3):532–546. [PubMed] [Google Scholar]
- Snavely M. D., Motulsky H. J., Moustafa E., Mahan L. C., Insel P. A. beta-Adrenergic receptor subtypes in the rat renal cortex. Selective regulation of beta 1-adrenergic receptors by pheochromocytoma. Circ Res. 1982 Oct;51(4):504–513. doi: 10.1161/01.res.51.4.504. [DOI] [PubMed] [Google Scholar]
- Stadel J. M., De Lean A., Lefkowitz R. J. Molecular mechanisms of coupling in hormone receptor-adenylate cyclase systems. Adv Enzymol Relat Areas Mol Biol. 1982;53:1–43. doi: 10.1002/9780470122983.ch1. [DOI] [PubMed] [Google Scholar]
- Taub M., Chuman L., Saier M. H., Jr, Sato G. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3338–3342. doi: 10.1073/pnas.76.7.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valentich J. D. Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule. Ann N Y Acad Sci. 1981;372:384–405. doi: 10.1111/j.1749-6632.1981.tb15490.x. [DOI] [PubMed] [Google Scholar]