Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Aug 1;97(2):549–555. doi: 10.1083/jcb.97.2.549

Angiotensinogen production by rat hepatoma cells in culture and analysis of its regulation by techniques of somatic cell genetics

PMCID: PMC2112538  PMID: 6885909

Abstract

Angiotensinogen was synthesized by cells derived from the Reuber H35 rat hepatoma. Independent clones produced similar amounts of angiotensinogen, which corresponded to about four times more than expected for normal hepatocytes. The protein was secreted rapidly but could be visualized within cells using immunofluorescence. For one clone, it is shown that maximal angiotensinogen synthesis occurred during mid-exponential growth. Somatic cell genetics techniques have been used to investigate the regulation of angiotensinogen expression. Eleven clones of dedifferentiated variant hepatoma cells that failed to produce most or all of the liver specific proteins analyzed including albumin fell into two groups: Seven clones produced only 1-3% as much angiotensinogen as the differentiated clones, and four showed a reduction to 10-30%. Clones of the latter class were the only ones among the eleven analyzed that retained the potential to give rise to revertants, showing restoration of the differentiated state. All revertants fully restored angiotensinogen production, but only some of them re-expressed albumin. Somatic hybrids between differentiated hepatoma cells and one of the variants showed a substantial reduction in angiotensinogen production, whereas for some clones, albumin synthesis was fully maintained. These results show that regulation of the expression of angiotensinogen and of a second serum protein, albumin, was independent and that angiotensinogen synthesis was a faithful indicator of the general differentiation profile of all classes of clones.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertolotti R. A selective system for hepatoma cells producing gluconeogenic enzymes. Somatic Cell Genet. 1977 Jul;3(4):365–380. doi: 10.1007/BF01542966. [DOI] [PubMed] [Google Scholar]
  2. Bouhnik J., Clauser E., Gardes J., Corvol P., Menard J. Direct radioimmunoassay of rat angiotensinogen and its application to rats in various endocrine states. Clin Sci (Lond) 1982 Apr;62(4):355–360. doi: 10.1042/cs0620355. [DOI] [PubMed] [Google Scholar]
  3. Bouhnik J., Clauser E., Strosberg D., Frenoy J. P., Menard J., Corvol P. Rat angiotensinogen and des(angiotensin I)angiotensinogen: purification, characterization, and partial sequencing. Biochemistry. 1981 Nov 24;20(24):7010–7015. doi: 10.1021/bi00527a036. [DOI] [PubMed] [Google Scholar]
  4. Bouhnik J., Galen F. X., Clauser E., Menard J., Corvol P. The renin-angiotensin system in thyroidectomized rats. Endocrinology. 1981 Feb;108(2):647–650. doi: 10.1210/endo-108-2-647. [DOI] [PubMed] [Google Scholar]
  5. Cassio D., Hassoux R., Dupiers M., Uriel J., Weiss M. C. Coordinate secretion of mouse alphafetoprotein, mouse albumin and rat albumin by mouse hepatoma-rat hepatoma hybrid cells. J Cell Physiol. 1980 Sep;104(3):295–308. doi: 10.1002/jcp.1041040304. [DOI] [PubMed] [Google Scholar]
  6. Cassio D., Weiss M. C., Ott M. O., Sala-Trepat J. M., Friès J., Erdos T. Expression of the albumin gene in rat hepatoma cells and their dedifferentiated variants. Cell. 1981 Dec;27(2 Pt 1):351–358. doi: 10.1016/0092-8674(81)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Coon H. G., Weiss M. C. A quantitative comparison of formation of spontaneous and virus-produced viable hybrids. Proc Natl Acad Sci U S A. 1969 Mar;62(3):852–859. doi: 10.1073/pnas.62.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. D'Eustachio P., Ingram R. S., Tilghman S. M., Ruddle F. H. Murine alpha-fetoprotein and albumin: two evolutionarily linked proteins encoded on the same mouse chromosome. Somatic Cell Genet. 1981 May;7(3):289–294. doi: 10.1007/BF01538854. [DOI] [PubMed] [Google Scholar]
  9. Deschatrette J., Moore E. E., Dubois M., Cassio D., Weiss M. C. Dedifferentiated variants of a rat hepatoma: analysis by cell hybridization. Somatic Cell Genet. 1979 Nov;5(6):697–718. doi: 10.1007/BF01542636. [DOI] [PubMed] [Google Scholar]
  10. Deschatrette J., Moore E. E., Dubois M., Weiss M. C. Dedifferentiated variants of a rat hepatoma:reversion analysis. Cell. 1980 Apr;19(4):1043–1051. doi: 10.1016/0092-8674(80)90095-1. [DOI] [PubMed] [Google Scholar]
  11. Deschatrette J., Weiss M. C. Characterization of differentiated and dedifferentiated clones from a rat hepatoma. Biochimie. 1974;56(11-12):1603–1611. doi: 10.1016/s0300-9084(75)80286-0. [DOI] [PubMed] [Google Scholar]
  12. Eiferman F. A., Young P. R., Scott R. W., Tilghman S. M. Intragenic amplification and divergence in the mouse alpha-fetoprotein gene. Nature. 1981 Dec 24;294(5843):713–718. doi: 10.1038/294713a0. [DOI] [PubMed] [Google Scholar]
  13. Freeman R. H., Rostorfer H. H. Hepatic changes in renin substrate biosynthesis and alkaline phosphatase activity in the rat. Am J Physiol. 1972 Aug;223(2):364–370. doi: 10.1152/ajplegacy.1972.223.2.364. [DOI] [PubMed] [Google Scholar]
  14. HAM R. G. CLONAL GROWTH OF MAMMALIAN CELLS IN A CHEMICALLY DEFINED, SYNTHETIC MEDIUM. Proc Natl Acad Sci U S A. 1965 Feb;53:288–293. doi: 10.1073/pnas.53.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HELMER O. M., GRIFFITH R. S. The effect of the administration of estrogens on the renin-substrate (hypertensinogen) content of rat plasma. Endocrinology. 1952 Nov;51(5):421–426. doi: 10.1210/endo-51-5-421. [DOI] [PubMed] [Google Scholar]
  16. Jagodzinski L. L., Sargent T. D., Yang M., Glackin C., Bonner J. Sequence homology between RNAs encoding rat alpha-fetoprotein and rat serum albumin. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3521–3525. doi: 10.1073/pnas.78.6.3521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laurell C. B. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem. 1966 Apr;15(1):45–52. doi: 10.1016/0003-2697(66)90246-6. [DOI] [PubMed] [Google Scholar]
  19. Menard J., Malmejac A., Milliez P. Influence of diethylstilbestrol on the renin-angiotensin system of male rats. Endocrinology. 1970 Apr;86(4):774–780. doi: 10.1210/endo-86-4-774. [DOI] [PubMed] [Google Scholar]
  20. Mével-Ninio M., Weiss M. C. Immunofluorescence analysis of the time-course of extinction, reexpression, and activation of albumin production in rat hepatoma-mouse fibroblast heterokaryons and hybrids. J Cell Biol. 1981 Aug;90(2):339–350. doi: 10.1083/jcb.90.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nasjetti A., Masson G. M. Hepatic origin of renin substrate. Can J Physiol Pharmacol. 1971 Oct;49(10):931–932. doi: 10.1139/y71-129. [DOI] [PubMed] [Google Scholar]
  22. Ott M. O., Sperling L., Cassio D., Levilliers J., Sala-Trepat J., Weiss M. C. Undermethylation at the 5' end of the albumin gene is necessary but not sufficient for albumin production by rat hepatoma cells in culture. Cell. 1982 Oct;30(3):825–833. doi: 10.1016/0092-8674(82)90287-2. [DOI] [PubMed] [Google Scholar]
  23. PITOT H. C., PERAINO C., MORSE P. A., Jr, POTTER V. R. HEPATOMAS IN TISSUE CULTURE COMPARED WITH ADAPTING LIVER IN VIVO. Natl Cancer Inst Monogr. 1964 Apr;13:229–245. [PubMed] [Google Scholar]
  24. Poulsen K. Kinetics of the renin system. The basis for determination of the different components of the system. Scand J Clin Lab Invest Suppl. 1973;132:3–86. [PubMed] [Google Scholar]
  25. Ruoslahti E., Terry W. D. alpha foetoprotein and serum albumin show sequence homology. Nature. 1976 Apr 29;260(5554):804–805. doi: 10.1038/260804a0. [DOI] [PubMed] [Google Scholar]
  26. Sargent T. D., Jagodzinski L. L., Yang M., Bonner J. Fine structure and evolution of the rat serum albumin gene. Mol Cell Biol. 1981 Oct;1(10):871–883. doi: 10.1128/mcb.1.10.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Strous G. J., Lodish H. F. Intracellular transport of secretory and membrane proteins in hepatoma cells infected by vesicular stomatitis virus. Cell. 1980 Dec;22(3):709–717. doi: 10.1016/0092-8674(80)90547-4. [DOI] [PubMed] [Google Scholar]
  28. Weigand K., Warnze H., Falge C. Synthesis of angiotensinogen by isolated rat liver cells and its regulation in comparison to serum albumin. Biochem Biophys Res Commun. 1977 Mar 7;75(1):102–110. doi: 10.1016/0006-291x(77)91295-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES