Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Aug 1;97(2):480–488. doi: 10.1083/jcb.97.2.480

Regulation of tyrosinase in human melanocytes grown in culture

PMCID: PMC2112541  PMID: 6411733

Abstract

Tyrosinase, the enzyme that controls the synthesis of melanin, is a unique product of melanocytes. Normal and malignant human melanocytes grown in culture were used to study the factors that regulate the expression of tyrosinase. Immunoprecipitation experiments showed that newly synthesized tyrosinase appeared as a protein with an apparent molecular weight of 70,000 that was processed to a protein with an apparent molecular weight of 80,000. Neither tunicamycin nor 2-deoxy-D- glucose inhibited this conversion, suggesting that O-glycosylation is the major biochemical event in the posttranslational modification of tyrosinase. Agents that stimulated the proliferation of normal melanocytes also stimulated tyrosinase activity. Melanocytes with low levels of tyrosinase activity synthesized less tyrosinase, processed the enzyme more slowly, and degraded it more rapidly than melanocytes with high levels of tyrosinase activity. We conclude that tyrosinase activity in cultures of human melanocytes derived from different donors is determined predominantly by its abundance.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burnett J. B., Holstein T. J., Quevedo W. C., Jr Electrophoretic variations of tyrosinase in follilar melanocytes during the hair growth cycle in mice. J Exp Zool. 1969 Jul;171(3):369–376. doi: 10.1002/jez.1401710311. [DOI] [PubMed] [Google Scholar]
  2. Burnett J. B., Seiler H., Brown I. V. Separation and characterization of multiple forms of tyrosinase from mouse melanoma. Cancer Res. 1967 May;27(5):880–889. [PubMed] [Google Scholar]
  3. Datema R., Schwarz R. T. Interference with glycosylation of glycoproteins. Inhibition of formation of lipid-linked oligosaccharides in vivo. Biochem J. 1979 Oct 15;184(1):113–123. doi: 10.1042/bj1840113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eisinger M., Marko O. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2018–2022. doi: 10.1073/pnas.79.6.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Halaban R., Lerner A. B. The dual effect of melanocyte-stimulating hormone (MSH) on the growth of cultured mouse melanoma cells. Exp Cell Res. 1977 Aug;108(1):111–117. doi: 10.1016/s0014-4827(77)80016-5. [DOI] [PubMed] [Google Scholar]
  6. Halaban R., Lerner A. B. Tyrosinase and inhibition of proliferation of melanoma cells and fibroblasts. Exp Cell Res. 1977 Aug;108(1):119–125. doi: 10.1016/s0014-4827(77)80017-7. [DOI] [PubMed] [Google Scholar]
  7. Halaban R., Nordlund J., Francke U., Moellmann G., Eisenstadt J. M. Supermelanotic hybrids derived from mouse melanomas and normal mouse cells. Somatic Cell Genet. 1980 Jan;6(1):29–44. doi: 10.1007/BF01538694. [DOI] [PubMed] [Google Scholar]
  8. Hanover J. A., Elting J., Mintz G. R., Lennarz W. J. Temporal aspects of the N- and O-glycosylation of human chorionic gonadotropin. J Biol Chem. 1982 Sep 10;257(17):10172–10177. [PubMed] [Google Scholar]
  9. Hearing V. J., Ekel T. M., Montague P. M. Mammalian tyrosinase: isozymic forms of the enzyme. Int J Biochem. 1981;13(1):99–103. doi: 10.1016/0020-711x(81)90141-5. [DOI] [PubMed] [Google Scholar]
  10. Hearing V. J., Nicholson J. M., Montague P. M., Ekel T. M., Tomecki K. J. Mammalian tyrosinase. Structural and functional interraltionship of isozymes. Biochim Biophys Acta. 1978 Feb 10;522(2):327–339. doi: 10.1016/0005-2744(78)90067-0. [DOI] [PubMed] [Google Scholar]
  11. Heifetz A., Keenan R. W., Elbein A. D. Mechanism of action of tunicamycin on the UDP-GlcNAc:dolichyl-phosphate Glc-NAc-1-phosphate transferase. Biochemistry. 1979 May 29;18(11):2186–2192. doi: 10.1021/bi00578a008. [DOI] [PubMed] [Google Scholar]
  12. Houghton A. N., Eisinger M., Albino A. P., Cairncross J. G., Old L. J. Surface antigens of melanocytes and melanomas. Markers of melanocyte differentiation and melanoma subsets. J Exp Med. 1982 Dec 1;156(6):1755–1766. doi: 10.1084/jem.156.6.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huberman E., Heckman C., Langenbach R. Stimulation of differentiated functions in human melanoma cells by tumor-promoting agents and dimethyl sulfoxide. Cancer Res. 1979 Jul;39(7 Pt 1):2618–2624. [PubMed] [Google Scholar]
  14. Kessler S. W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol. 1975 Dec;115(6):1617–1624. [PubMed] [Google Scholar]
  15. King R. A., Witkop C. J., Jr Hairbulb tyrosinase activity in oculocutaneous albinism. Nature. 1976 Sep 2;263(5572):69–71. doi: 10.1038/263069a0. [DOI] [PubMed] [Google Scholar]
  16. LERNER A. B., MCGUIRE J. S. MELANOCYTE-STIMULATING HORMONE AND ADRENOCORTICOTROPHIC HORMONE. THEIR RELATION TO PIGMENTATION. N Engl J Med. 1964 Mar 12;270:539–546. doi: 10.1056/NEJM196403122701101. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lambert D. T., Stachelek C., Varga J. M., Lerner A. B. Iodination of beta-melanotropin. Time course analysis of reaction mixtures by high pressure liquid chromatography and characterization of biologically active mono- and diiodo-beta-melanotropin. J Biol Chem. 1982 Jul 25;257(14):8211–8215. [PubMed] [Google Scholar]
  19. Mahoney W. C., Duksin D. Biological activities of the two major components of tunicamycin. J Biol Chem. 1979 Jul 25;254(14):6572–6576. [PubMed] [Google Scholar]
  20. Melchers F. Biosynthesis, intracellular transport, and secretion of immunoglobulins. Effect of 2-deoxy-D-glucose in tumor plasma cells producing and secreting immunoglobulin G1. Biochemistry. 1973 Apr 10;12(8):1471–1476. doi: 10.1021/bi00732a001. [DOI] [PubMed] [Google Scholar]
  21. Miyazaki K., Otaki N. Tyrosinase as glycoprotein. Arch Dermatol Forsch. 1975;252(3):211–216. doi: 10.1007/BF00557921. [DOI] [PubMed] [Google Scholar]
  22. Nishioka K. Particulate tyrosinase of human malignant melanoma. Solubilization, purification following trypsin treatment, and characterization. Eur J Biochem. 1978 Apr;85(1):137–146. doi: 10.1111/j.1432-1033.1978.tb12221.x. [DOI] [PubMed] [Google Scholar]
  23. Otaki N., Miyazaki K. Immunologic homogeneity and electrophoretic heterogeneity of mouse melanoma tyrosinases. J Invest Dermatol. 1973 Dec;61(6):339–343. doi: 10.1111/1523-1747.ep12676617. [DOI] [PubMed] [Google Scholar]
  24. Pawelek J., Halaban R., Christie G. Melanoma cells which require cyclic AMP for growth. Nature. 1975 Dec 11;258(5535):539–540. doi: 10.1038/258539a0. [DOI] [PubMed] [Google Scholar]
  25. Pawelek J., Wong G., Sansone M., Morowitz J. Molecular biology of pigment cells. Molecular controls in mammalian pigmentation. Yale J Biol Med. 1973 Dec;46(5):430–443. [PMC free article] [PubMed] [Google Scholar]
  26. Pomerantz S. H., Ances I. G. Tyrosinase activity in human skin. Influence of race and age in newborns. J Clin Invest. 1975 May;55(5):1127–1131. doi: 10.1172/JCI108014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pomerantz S. H., Li J. P. Purification and properties of tyrosinase isoenzymes from hamster melanoma. Yale J Biol Med. 1973 Dec;46(5):541–552. [PMC free article] [PubMed] [Google Scholar]
  28. Takatsuki A., Tamura G. Effect of tunicamycin on the synthesis of macromolecules in cultures of chick embryo fibroblasts infected with Newcastle disease virus. J Antibiot (Tokyo) 1971 Nov;24(11):785–794. doi: 10.7164/antibiotics.24.785. [DOI] [PubMed] [Google Scholar]
  29. Varga J. M., Dipasquale A., Pawelek J., McGuire J. S., Lerner A. B. Regulation of melanocyte stimulating hormone action at the receptor level: discontinuous binding of hormone to synchronized mouse melanoma cells during the cell cycle. Proc Natl Acad Sci U S A. 1974 May;71(5):1590–1593. doi: 10.1073/pnas.71.5.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Varga J. M., Moellmann G., Fritsch P., Godawska E., Lerner A. B. Association of cell surface receptors for melanotropin with the Golgi region in mouse melanoma cells. Proc Natl Acad Sci U S A. 1976 Feb;73(2):559–562. doi: 10.1073/pnas.73.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wong G., Pawelek J. Control of phenotypic expression of cultured melanoma cells by melanocyte stimulating hormones. Nat New Biol. 1973 Feb 14;241(111):213–215. doi: 10.1038/newbio241213a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES