Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Sep 1;97(3):756–771. doi: 10.1083/jcb.97.3.756

Myosin isozymes in normal and cross-reinnervated cat skeletal muscle fibers

PMCID: PMC2112548  PMID: 6885917

Abstract

Immunocytochemical characteristics of myosin have been demonstrated directly in normal and cross-reinnervated skeletal muscle fibers whose physiological properties have been defined. Fibers belonging to individual motor units were identified by the glycogen-depletion method, which permits correlation of cytochemical and physiological data on the same fibers. The normal flexor digitorum longus (FDL) of the cat is composed primarily of fast-twitch motor units having muscle fibers with high myosin ATPase activity. These fibers reacted with antibodies specific for the two light chains characteristic of fast myosin, but not with antibodies against slow myosin. Two categories of fast fibers, corresponding to two physiological motor unit types (FF and FR), differed in their immunochemical response, from which it can be concluded that their myosins are distinctive. The soleus (SOL) consists almost entirely of slow-twitch motor units having muscle fibers with low myosin ATPase activity. These fibers reacted with antibodies against slow myosin, but not with antibodies specific for fast myosin. When the FDL muscle was cross-reinnervated by the SOL nerve, twitch contraction times were slowed about twofold, and motor units resembled SOL units in a number of physiological properties. The corresponding muscle fibers had low ATPase activity, and they reacted with antibodies against slow myosin only. The myosin of individual cross-reinnervated FDL muscle units was therefore transformed, apparently completely, to a slow type. In contrast, cross-reinnervation of the SOL muscle by FDL motoneurons did not effect a complete converse transformation. Although cross-reinnervated SOL motor units had faster than normal twitch contraction times (about twofold), other physiological properties characteristic of type S motor units were unchanged. Despite the change in contraction times, cross-reinnervated SOL muscle fibers exhibited no change in ATPase activity. They also continued to react with antibodies against slow myosin, but in contrast to the normal SOL, they now showed a positive response to an antibody specific for one of the light chains of fast myosin. The myosins of both fast and slow muscles were thus converted by cross-reinnervation, but in the SOL, the newly synthesized myosin was not equivalent to that normally present in either the FDL or SOL. This suggests that, in the SOL, alteration of the nerve supply and the associated dynamic activity pattern are not sufficient to completely respecify the type of myosin expressed.

Full Text

The Full Text of this article is available as a PDF (9.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BULLER A. J., ECCLES J. C., ECCLES R. M. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol. 1960 Feb;150:417–439. doi: 10.1113/jphysiol.1960.sp006395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bagust J., Lewis D. M., Westerman R. A. Motor units in cross-reinnervated fast and slow twitch muscle of the cat. J Physiol. 1981;313:223–235. doi: 10.1113/jphysiol.1981.sp013660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buller A. J., Mommaerts W. F., Seraydarian K. Enzymic properties of myosin in fast and slow twitch muscles of the cat following cross-innervation. J Physiol. 1969 Dec;205(3):581–597. doi: 10.1113/jphysiol.1969.sp008984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burke R. E., Levine D. N., Salcman M., Tsairis P. Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol. 1974 May;238(3):503–514. doi: 10.1113/jphysiol.1974.sp010540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burke R. E., Levine D. N., Tsairis P., Zajac F. E., 3rd Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol. 1973 Nov;234(3):723–748. doi: 10.1113/jphysiol.1973.sp010369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burke R. E. Motor unit types of cat triceps surae muscle. J Physiol. 1967 Nov;193(1):141–160. doi: 10.1113/jphysiol.1967.sp008348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bárány M., Close R. I. The transformation of myosin in cross-innervated rat muscles. J Physiol. 1971 Mar;213(2):455–474. doi: 10.1113/jphysiol.1971.sp009393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dalla Libera L., Sartore S., Pierobon-Bormioli S., Schiaffino S. Fast-white and fast-red isomyosins in guinea pig muscles. Biochem Biophys Res Commun. 1980 Oct 31;96(4):1662–1670. doi: 10.1016/0006-291x(80)91365-0. [DOI] [PubMed] [Google Scholar]
  10. Dhoot G. K., Perry S. V., Vrbova G. Changes in the distribution of the components of the troponin complex in muscle fibers after cross-innervation. Exp Neurol. 1981 Jun;72(3):513–530. doi: 10.1016/0014-4886(81)90001-7. [DOI] [PubMed] [Google Scholar]
  11. Dubowitz V. Cross-innervated mammalian skeletal muscle: histochemical, physiological and biochemical observations. J Physiol. 1967 Dec;193(3):481–496.3. doi: 10.1113/jphysiol.1967.sp008373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gauthier G. F., Hobbs A. W. Effects of denervation on the distribution of myosin isozymes in skeletal muscle fibers. Exp Neurol. 1982 May;76(2):331–346. doi: 10.1016/0014-4886(82)90213-8. [DOI] [PubMed] [Google Scholar]
  13. Gauthier G. F., Lowey S., Benfield P. A., Hobbs A. W. Distribution and properties of myosin isozymes in developing avian and mammalian skeletal muscle fibers. J Cell Biol. 1982 Feb;92(2):471–484. doi: 10.1083/jcb.92.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gauthier G. F., Lowey S. Distribution of myosin isoenzymes among skeletal muscle fiber types. J Cell Biol. 1979 Apr;81(1):10–25. doi: 10.1083/jcb.81.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gauthier G. F., Lowey S. Polymorphism of myosin among skeletal muscle fiber types. J Cell Biol. 1977 Sep;74(3):760–779. doi: 10.1083/jcb.74.3.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldring J. M., Kuno M., Núez R., Weakly J. N. Do identical activity patterns in fast and slow motor axons exert the same influence on the twitch time of cat skeletal muscle? J Physiol. 1981 Dec;321:211–223. doi: 10.1113/jphysiol.1981.sp013980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guth L., Samaha F. J., Albers R. W. The neural regulation of some phenotypic differences between the fiber types of mammalian skeletal muscle. Exp Neurol. 1970 Jan;26(1):126–135. doi: 10.1016/0014-4886(70)90094-4. [DOI] [PubMed] [Google Scholar]
  18. Guth L., Samaha F. J. Procedure for the histochemical demonstration of actomyosin ATPase. Exp Neurol. 1970 Aug;28(2):365–367. [PubMed] [Google Scholar]
  19. Heilmann C., Pette D. Molecular transformations in sarcoplasmic reticulum of fast-twitch muscle by electro-stimulation. Eur J Biochem. 1979 Feb 1;93(3):437–446. doi: 10.1111/j.1432-1033.1979.tb12841.x. [DOI] [PubMed] [Google Scholar]
  20. Hoh J. F. Neural regulation of mammalian fast and slow muscle myosins: an electrophoretic analysis. Biochemistry. 1975 Feb 25;14(4):742–747. doi: 10.1021/bi00675a015. [DOI] [PubMed] [Google Scholar]
  21. Holt J. C., Lowey S. Distribution of alkali light chains in myosin: isolation of isoenzymes. Biochemistry. 1977 Oct 4;16(20):4398–4402. doi: 10.1021/bi00639a011. [DOI] [PubMed] [Google Scholar]
  22. Karpati G., Engel W. K. "Type grouping" in skeletal muscles after experimental reinnervation. Neurology. 1968 May;18(5):447–455. doi: 10.1212/wnl.18.5.447. [DOI] [PubMed] [Google Scholar]
  23. Lewis D. M., Rowlerson A., Webb S. N. Motor units and immunohistochemistry of cat soleus muscle after long periods of cross-reinnervation. J Physiol. 1982 Apr;325:403–418. doi: 10.1113/jphysiol.1982.sp014158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McDonagh J. C., Binder M. D., Reinking R. M., Stuart D. G. Tetrapartite classification of motor units of cat tibialis posterior. J Neurophysiol. 1980 Oct;44(4):696–712. doi: 10.1152/jn.1980.44.4.696. [DOI] [PubMed] [Google Scholar]
  25. Mommaerts W. F., Seraydarian K., Suh M., Kean C. J., Buller A. J. The conversion of some biochemical properties of mammalian skeletal muscles following cross-reinnervation. Exp Neurol. 1977 Jun;55(3 Pt 1):637–653. doi: 10.1016/0014-4886(77)90290-4. [DOI] [PubMed] [Google Scholar]
  26. Pierobon-Bormioli S., Sartore S., Libera L. D., Vitadello M., Schiaffino S. "Fast" isomyosins and fiber types in mammalian skeletal muscle. J Histochem Cytochem. 1981 Oct;29(10):1179–1188. doi: 10.1177/29.10.7028858. [DOI] [PubMed] [Google Scholar]
  27. Secrist D. J., Kerrick W. G. Associated changes in Ca2+ and Sr2+ activation properties and fiber proteins in cross-reinnervated rabbit soleus. Pflugers Arch. 1980 Apr;384(3):219–229. doi: 10.1007/BF00584556. [DOI] [PubMed] [Google Scholar]
  28. Silberstein L., Lowey S. Isolated and distribution of myosin isoenzymes in chicken pectoralis muscle. J Mol Biol. 1981 May 15;148(2):153–189. doi: 10.1016/0022-2836(81)90510-6. [DOI] [PubMed] [Google Scholar]
  29. Srihari T., Seedorf U., Pette D. Ipsi-and contralateral changes in rabbit soleus myosins by cross-reinnervation. Pflugers Arch. 1981 Jun;390(3):246–249. doi: 10.1007/BF00658269. [DOI] [PubMed] [Google Scholar]
  30. Sréter F. A., Gergely J. The effect of cross reinnervation on the synthesis of myosin light chains. Biochem Biophys Res Commun. 1974 Jan;56(1):84–89. doi: 10.1016/s0006-291x(74)80318-9. [DOI] [PubMed] [Google Scholar]
  31. Wagner P. D. Formation and characterization of myosin hybrids containing essential light chains and heavy chains from different muscle myosins. J Biol Chem. 1981 Mar 10;256(5):2493–2498. [PubMed] [Google Scholar]
  32. Wagner P. D., Giniger E. Hydrolysis of ATP and reversible binding to F-actin by myosin heavy chains free of all light chains. Nature. 1981 Aug 6;292(5823):560–562. doi: 10.1038/292560a0. [DOI] [PubMed] [Google Scholar]
  33. Weeds A. G., Trentham D. R., Kean C. J., Buller A. J. Myosin from cross-reinnervated cat muscles. Nature. 1974 Jan 18;247(5437):135–139. doi: 10.1038/247135a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES