Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Sep 1;97(3):909–917. doi: 10.1083/jcb.97.3.909

Cell fusion and intramembrane particle distribution in polyethylene glycol-resistant cells

PMCID: PMC2112556  PMID: 6885925

Abstract

The distribution of intramembrane particles (IMP) as revealed by freeze- fracture electron microscopy has been analyzed following treatment of mouse L cells and fusion-deficient L cell derivatives with several concentrations of polyethylene glycol (PEG). In cell cultures treated with concentrations of PEG below the critical level for fusion, no aggregation of IMP was observed. When confluent cultures of the parental cells are treated with 50% PEG, greater than 90% of the cells fuse, and cold-induced IMP aggregation is extensive. In contrast, identical treatment of fusion-deficient cell lines shows neither extensive fusion nor IMP redistribution. At higher concentrations of PEG, however, the PEG-resistant cells fuse extensively and IMP aggregation is evident. Thus the decreased ability of the fusion- deficient cells to fuse after treatment with PEG is correlated with the failure of IMP aggregation to occur. A technique for quantifying particle distribution was developed that is practical for the accurate analysis of a large number of micrographs. The variance from the mean number of particles in randomly chosen areas of fixed size was calculated for each cell line at each concentration of PEG. Statistical analysis confirms visual observation of highly aggregated IMP, and allows detection of low levels of aggregation in parental cells that were less extensively fused by exposure to lower concentrations of PEG. When low levels of fusion were induced in fusion-deficient cells, however, no IMP aggregation could be detected.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbas A. K., Ault K. A., Karnovsky M. J., Unanue E. R. Non-random distribution of surface immunoglobulins on murine B lymphocytes. J Immunol. 1975 Apr;114(4):1197–1204. [PubMed] [Google Scholar]
  2. Allen T. M., McAllister L., Mausolf S., Gyorffy E. Liposome-cell interactions. A study of the interactions of liposomes containing entrapped anti-cancer drugs with the EMT6, S49 and AE1 (transport-deficient) cell lines. Biochim Biophys Acta. 1981 May 6;643(2):346–362. doi: 10.1016/0005-2736(81)90080-8. [DOI] [PubMed] [Google Scholar]
  3. Armond P. A., Staehelin L. A. Lateral and vertical displacement of integral membrane proteins during lipid phase transition in Anacystis nidulans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1901–1905. doi: 10.1073/pnas.76.4.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Asano A., Sekiguchi K. Redistribution of intramembrane particles of human erythrocytes induced by HVJ (Sendai virus): a prerequisite for the virus-induced cell fusion. J Supramol Struct. 1978;9(3):441–452. doi: 10.1002/jss.400090314. [DOI] [PubMed] [Google Scholar]
  5. Baudhuin P., Leroy-Houyet M. A., Quintart J., Berthet P. Application of cluster analysis for characterization of spatial distribution of particles by stereological methods. J Microsc. 1979 Jan;115(1):1–17. doi: 10.1111/j.1365-2818.1979.tb00148.x. [DOI] [PubMed] [Google Scholar]
  6. Blow A. M., Botham G. M., Fisher D., Goodall A. H., Tilcock C. P., Lucy J. A. Water and calcium ions in cell fusion induced by poly(ethylene glycol). FEBS Lett. 1978 Oct 15;94(2):305–310. doi: 10.1016/0014-5793(78)80963-6. [DOI] [PubMed] [Google Scholar]
  7. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  8. Burwen S. J., Satir B. H. A freeze-fracture study of early membrane events during mast cell secretion. J Cell Biol. 1977 Jun;73(3):660–671. doi: 10.1083/jcb.73.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chi E. Y., Lagunoff D., Koehler J. K. Freeze-fracture study of mast cell secretion. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2823–2827. doi: 10.1073/pnas.73.8.2823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dahl G., Schudt C., Gratzl M. Fusion of isolated myoblast plasma membranes. An approach to the mechanism. Biochim Biophys Acta. 1978 Dec 4;514(1):105–116. doi: 10.1016/0005-2736(78)90080-9. [DOI] [PubMed] [Google Scholar]
  11. Davidson R. L., Gerald P. S. Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol. Somatic Cell Genet. 1976 Mar;2(2):165–176. doi: 10.1007/BF01542629. [DOI] [PubMed] [Google Scholar]
  12. Davidson R. L., Gerald P. S. Induction of mammalian somatic cell hybridization by polyethylene glycol. Methods Cell Biol. 1977;15:325–338. doi: 10.1016/s0091-679x(08)60223-x. [DOI] [PubMed] [Google Scholar]
  13. Davidson R. L., O'Malley K. A., Wheeler T. B. Polyethylene glycol-induced mammalian cell hybridization: effect of polyethylene glycol molecular weight and concentration. Somatic Cell Genet. 1976 May;2(3):271–280. doi: 10.1007/BF01538965. [DOI] [PubMed] [Google Scholar]
  14. Elgsaeter A., Branton D. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J Cell Biol. 1974 Dec;63(3):1018–1036. doi: 10.1083/jcb.63.3.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Finegold L. Cell membrane fluidity: molecular modeling of particle aggregations seen in electron microscopy. Biochim Biophys Acta. 1976 Oct 5;448(2):393–398. doi: 10.1016/0005-2736(76)90252-2. [DOI] [PubMed] [Google Scholar]
  16. Gershon N. D., Demsey A., Stackpole C. W. Analysis of local order in the spatial distribution of cell surface molecular assemblies. Exp Cell Res. 1979 Aug;122(1):115–126. doi: 10.1016/0014-4827(79)90566-4. [DOI] [PubMed] [Google Scholar]
  17. HARRIS H., WATKINS J. F. HYBRID CELLS DERIVED FROM MOUSE AND MAN: ARTIFICIAL HETEROKARYONS OF MAMMALIAN CELLS FROM DIFFERENT SPECIES. Nature. 1965 Feb 13;205:640–646. doi: 10.1038/205640a0. [DOI] [PubMed] [Google Scholar]
  18. Harter D. H., Choppin P. W. Cell-fusing activity of visna virus particles. Virology. 1967 Feb;31(2):279–288. doi: 10.1016/0042-6822(67)90172-9. [DOI] [PubMed] [Google Scholar]
  19. Holmes K. V., Choppin P. W. On the role of the response of the cell membrane in determining virus virulence. Contrasting effects of the parainfluenza virus SV5 in two cell types. J Exp Med. 1966 Sep 1;124(3):501–520. doi: 10.1084/jem.124.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Julesz B. Textons, the elements of texture perception, and their interactions. Nature. 1981 Mar 12;290(5802):91–97. doi: 10.1038/290091a0. [DOI] [PubMed] [Google Scholar]
  21. Kim J., Okada Y. Morphological changes in Ehrlich ascites tumor cells during the cell fusion reaction with HVJ (Sendai virus). II. Cluster formation of intramembrane particles in the early stage of cell fusion. Exp Cell Res. 1981 Mar;132(1):125–136. doi: 10.1016/0014-4827(81)90089-6. [DOI] [PubMed] [Google Scholar]
  22. Klebe R. J., Mancuso M. G. Chemicals which promote cell hybridization. Somatic Cell Genet. 1981 Jul;7(4):473–488. doi: 10.1007/BF01542991. [DOI] [PubMed] [Google Scholar]
  23. Knutton S., Bächi T. The role of cell swelling and haemolysis in Sendai virus-induced cell fusion and in the diffusion of incorporated viral antigens. J Cell Sci. 1980 Apr;42:153–167. doi: 10.1242/jcs.42.1.153. [DOI] [PubMed] [Google Scholar]
  24. Knutton S. Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol. J Cell Sci. 1979 Apr;36:61–72. doi: 10.1242/jcs.36.1.61. [DOI] [PubMed] [Google Scholar]
  25. Lawson D., Raff M. C., Gomperts B., Fewtrell C., Gilula N. B. Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J Cell Biol. 1977 Feb;72(2):242–259. doi: 10.1083/jcb.72.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Markovics J., Glass L., Maul G. G. Pore patterns on nuclear membranes. Exp Cell Res. 1974 Apr;85(2):443–451. doi: 10.1016/0014-4827(74)90148-7. [DOI] [PubMed] [Google Scholar]
  27. McCammon J. R., Fan V. S. Release of membrane constituents following polyethylene glycol treatment of HEp-2 cells. Biochim Biophys Acta. 1979 Feb 20;551(1):67–73. doi: 10.1016/0005-2736(79)90353-5. [DOI] [PubMed] [Google Scholar]
  28. Mehlhorn R. J., Packer L. Analysis of freeze-fracture electron micrographs by a computer-based technique. Biophys J. 1976 Jun;16(6):613–625. doi: 10.1016/S0006-3495(76)85716-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. OKADA Y. Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich's ascites tumor cells. I. Microscopic observation of giant polynuclear cell formation. Exp Cell Res. 1962 Feb;26:98–107. doi: 10.1016/0014-4827(62)90205-7. [DOI] [PubMed] [Google Scholar]
  30. Orci L., Perrelet A., Friend D. S. Freeze-fracture of membrane fusions during exocytosis in pancreatic B-cells. J Cell Biol. 1977 Oct;75(1):23–30. doi: 10.1083/jcb.75.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pearson R. P., Hui S. W., Stewart T. P. Correlative statistical analysis and computer modelling of intramembraneous particle distributions in human erythrocyte membranes. Biochim Biophys Acta. 1979 Nov 2;557(2):265–282. doi: 10.1016/0005-2736(79)90326-2. [DOI] [PubMed] [Google Scholar]
  32. Perelson A. S. Spatial distribution of surface immunoglobulin on B lymphocytes. Local ordering. Exp Cell Res. 1978 Mar 15;112(2):309–321. doi: 10.1016/0014-4827(78)90214-8. [DOI] [PubMed] [Google Scholar]
  33. Pfeiffer J. R., Oliver J. M., Berlin R. D. Topographical distribution of coated pits. Nature. 1980 Aug 14;286(5774):727–729. doi: 10.1038/286727a0. [DOI] [PubMed] [Google Scholar]
  34. Pike M. C., Smith P. G. Disease clustering: a generalization of Knox's approach to the detection of space-time interactions. Biometrics. 1968 Sep;24(3):541–556. [PubMed] [Google Scholar]
  35. Pontecorvo G. Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment. Somatic Cell Genet. 1975 Oct;1(4):397–400. doi: 10.1007/BF01538671. [DOI] [PubMed] [Google Scholar]
  36. Robinson J. M., Roos D. S., Davidson R. L., Karnovsky M. J. Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion. J Cell Sci. 1979 Dec;40:63–75. doi: 10.1242/jcs.40.1.63. [DOI] [PubMed] [Google Scholar]
  37. Roos D. S., Davidson R. L. Isolation of mouse cell lines resistant to the fusion-inducing effect of polyethylene glycol. Somatic Cell Genet. 1980 May;6(3):381–390. doi: 10.1007/BF01542790. [DOI] [PubMed] [Google Scholar]
  38. Shotton D., Thompson K., Wofsy L., Branton D. Appearance and distribution of surface proteins of the human erythrocyte membrane. An electron microscope and immunochemical labeling study. J Cell Biol. 1978 Feb;76(2):512–531. doi: 10.1083/jcb.76.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Singer B., Sager R., Ramanis Z. Chloroplast Genetics of Chlamydomonas. III. Closing the Circle. Genetics. 1976 Jun;83(2):341–354. doi: 10.1093/genetics/83.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tavassoli M., Kosower N. S., Halverson C., Aoki M., Kosower E. M. Membrane fusion induced by the membrane mobility agent, A2C. Differentiation between fusible and non-fusible cells. Transfer of fusibility. Biochim Biophys Acta. 1980 Oct 2;601(3):544–558. doi: 10.1016/0005-2736(80)90557-x. [DOI] [PubMed] [Google Scholar]
  41. Volsky D. J., Loyter A. Inhibition of membrane fusion by suppression of lateral movement of membrane proteins. Biochim Biophys Acta. 1978 Dec 19;514(2):213–224. doi: 10.1016/0005-2736(78)90293-6. [DOI] [PubMed] [Google Scholar]
  42. Vos J., Ahkong Q. F., Botham G. M., Quirk S. J., Lucy J. A. Changes in the distribution of intramembranous particles in hen erythrocytes during cell fusion induced by the bivalent-cation ionophore A23187. Biochem J. 1976 Sep 15;158(3):651–653. doi: 10.1042/bj1580651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wallace B. A., Engelman D. M. The planar distributions of surface proteins and intramembrane particles in Acholeplasma laidlawii are differentially affected by the physical state of membrane lipids. Biochim Biophys Acta. 1978 Apr 20;508(3):431–449. doi: 10.1016/0005-2736(78)90090-1. [DOI] [PubMed] [Google Scholar]
  44. Wang E., Roos D. S., Heggeness M. H., Choppin P. W. Function of cytoplasmic fibers in syncytia. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):997–1012. doi: 10.1101/sqb.1982.046.01.093. [DOI] [PubMed] [Google Scholar]
  45. Weinstein R. S. Changes in plasma membrane structure associated with malignant transformation in human urinary bladder epithelium. Cancer Res. 1976 Jul;36(7 Pt 2):2518–2524. [PubMed] [Google Scholar]
  46. Yee A. G., Fischbach G. D., Karnovsky M. J. Clusters of intramembranous particles on cultured myotubes at sites that are highly sensitive to acetylcholine. Proc Natl Acad Sci U S A. 1978 Jun;75(6):3004–3008. doi: 10.1073/pnas.75.6.3004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. de Laat S. W., Tertoolen L. G., Bluemink J. G. Quantitative analysis of the numerical and lateral distribution of intramembrane particles in freeze-fractured biological membranes. Eur J Cell Biol. 1981 Feb;23(2):273–279. [PubMed] [Google Scholar]
  48. de StGroth S. F., Scheidegger D. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods. 1980;35(1-2):1–21. doi: 10.1016/0022-1759(80)90146-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES