Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Sep 1;97(3):810–817. doi: 10.1083/jcb.97.3.810

A subclass of proteins and sulfated macromolecules secreted by AtT-20 (mouse pituitary tumor) cells is sorted with adrenocorticotropin into dense secretory granules

PMCID: PMC2112565  PMID: 6309868

Abstract

The AtT-20 cell, a mouse pituitary tumor line that secretes adrenocorticotropin and beta-endorphin, sorts the proteins it externalizes into two exocytotic pathways. Cells that are labeled with [35S]methionine or [35S]sulfate can be shown to transport three acidic polypeptides (65,000, 60,000, and 37,000 mol wt) and at least two sulfated macromolecules into storage secretory granules. When the cells are stimulated by the secretagogue 8-bromo-cAMP, these polypeptides are coordinately secreted with mature adrenocorticotropin into the culture medium. In contrast, a completely different set of secreted polypeptides and sulfated macromolecules does not enter a storage form and is transported to the cell surface more rapidly. Their secretion from the cells is constitutive and does not require the presence of secretagogues. These molecules, like a viral membrane glycoprotein described previously (Gumbiner, B., and R. B. Kelly, 1982, Cell, 28:51- 59) are not found in isolated secretory granules and therefore must reach the cell surface in a different exocytotic vesicle. The segregation of a subclass of secretory macromolecules into the secretory granules, despite the existence of another potential secretory pathway, suggests that these molecules have specific functions related to regulated hormone secretion or storage. Presumably all of the proteins secreted by the regulated secretory granule pathway share some common property that targets them to the secretory granule.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P., Slorach S. A., Uvnäs B. Sequential exocytosis of storage granules during antigen-induced histamine release from sensitized rat mast cells in vitro. An electron microscopic study. Acta Physiol Scand. 1973 Jul;88(3):359–372. doi: 10.1111/j.1748-1716.1973.tb05465.x. [DOI] [PubMed] [Google Scholar]
  2. Berg N. B., Austin B. P. Intracellular transport of sulfated macromolecules in parotid acinar cells. Cell Tissue Res. 1976 Jan 26;165(2):215–225. doi: 10.1007/BF00226660. [DOI] [PubMed] [Google Scholar]
  3. Berg N. B. Sulphate metabolism in the exocrine pancreas. II. The production of sulphated macromolecules by the mouse exocrine pancreas. J Cell Sci. 1978 Jun;31:199–211. doi: 10.1242/jcs.31.1.199. [DOI] [PubMed] [Google Scholar]
  4. Carlson S. S., Wagner J. A., Kelly R. B. Purification of synaptic vesicles from elasmobranch electric organ and the use of biophysical criteria to demonstrate purity. Biochemistry. 1978 Apr 4;17(7):1188–1199. doi: 10.1021/bi00600a009. [DOI] [PubMed] [Google Scholar]
  5. Cohn D. V., Morrissey J. J., Hamilton J. W., Shofstall R. E., Smardo F. L., Chu L. L. Isolation and partial characterization of secretory protein I from bovine parathyroid glands. Biochemistry. 1981 Jul 7;20(14):4135–4140. doi: 10.1021/bi00517a029. [DOI] [PubMed] [Google Scholar]
  6. Cohn D. V., Zangerle R., Fischer-Colbrie R., Chu L. L., Elting J. J., Hamilton J. W., Winkler H. Similarity of secretory protein I from parathyroid gland to chromogranin A from adrenal medulla. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6056–6059. doi: 10.1073/pnas.79.19.6056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giannattasio G., Zanini A. Presence of sulfated proteoglycans in prolactin secretory granules isolated from the rat pituitary gland. Biochim Biophys Acta. 1976 Aug 9;439(2):349–357. doi: 10.1016/0005-2795(76)90070-2. [DOI] [PubMed] [Google Scholar]
  8. Giannattasio G., Zanini A., Rosa P., Meldolesi J., Margolis R. K., margolis R. U. Molecular organization of prolactin granules. III. Intracellular transport of sulfated glycosaminoglycans and glycoproteins of the bovine prolactin granule matrix. J Cell Biol. 1980 Jul;86(1):273–279. doi: 10.1083/jcb.86.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gumbiner B., Kelly R. B. Secretory granules of an anterior pituitary cell line, AtT-20, contain only mature forms of corticotropin and beta-lipotropin. Proc Natl Acad Sci U S A. 1981 Jan;78(1):318–322. doi: 10.1073/pnas.78.1.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gumbiner B., Kelly R. B. Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells. Cell. 1982 Jan;28(1):51–59. doi: 10.1016/0092-8674(82)90374-9. [DOI] [PubMed] [Google Scholar]
  11. Hoshina H., Hortin G., Boime I. Rat pro-opiomelanocortin contains sulfate. Science. 1982 Jul 2;217(4554):63–64. doi: 10.1126/science.6283633. [DOI] [PubMed] [Google Scholar]
  12. Howell S. L. The molecular organization of the beta granule of the islets of Langerhans. Adv Cytopharmacol. 1974;2:319–327. [PubMed] [Google Scholar]
  13. Kreil G. Transfer of proteins across membranes. Annu Rev Biochem. 1981;50:317–348. doi: 10.1146/annurev.bi.50.070181.001533. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lewis R. V., Stern A. S., Rossier J., Stein S., Udenfriend S. Putative enkephalin precursors in bovine adrenal medulla. Biochem Biophys Res Commun. 1979 Aug 13;89(3):822–829. doi: 10.1016/0006-291x(79)91852-7. [DOI] [PubMed] [Google Scholar]
  16. Loh Y. P., Gainer H. Characterization of pro-opiocortin-converting activity in purified secretory granules from rat pituitary neurointermediate lobe. Proc Natl Acad Sci U S A. 1982 Jan;79(1):108–112. doi: 10.1073/pnas.79.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mains R. E., Eipper B. A. Biosynthesis of adrenocorticotropic hormone in mouse pituitary tumor cells. J Biol Chem. 1976 Jul 10;251(13):4115–4120. [PubMed] [Google Scholar]
  18. Mains R. E., Eipper B. A., Ling N. Common precursor to corticotropins and endorphins. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3014–3018. doi: 10.1073/pnas.74.7.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Margolis R. K., Jaanus S. D., Margolis R. U. Stimulation by acetylcholine of sulfated mucopolysaccharide release from the perfused cat adrenal gland. Mol Pharmacol. 1973 Jul;9(4):590–594. [PubMed] [Google Scholar]
  20. Meyer D. I., Krause E., Dobberstein B. Secretory protein translocation across membranes-the role of the "docking protein'. Nature. 1982 Jun 24;297(5868):647–650. doi: 10.1038/297647a0. [DOI] [PubMed] [Google Scholar]
  21. Moore H. P., Gumbiner B., Kelly R. B. Chloroquine diverts ACTH from a regulated to a constitutive secretory pathway in AtT-20 cells. 1983 Mar 31-Apr 6Nature. 302(5907):434–436. doi: 10.1038/302434a0. [DOI] [PubMed] [Google Scholar]
  22. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  23. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  24. Reggio H. A., Palade G. E. Sulfated compounds in the zymogen granules of the guinea pig pancreas. J Cell Biol. 1978 May;77(2):288–314. doi: 10.1083/jcb.77.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reggio H., Dagorn J. C. Ionic interactions between bovine chymotrypsinogen A and chondroitin sulfate A.B.C.. A possible model for molecular aggregation in zymogen granules. J Cell Biol. 1978 Sep;78(3):951–957. doi: 10.1083/jcb.78.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roberts J. L., Herbert E. Characterization of a common precursor to corticotropin and beta-lipotropin: cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4826–4830. doi: 10.1073/pnas.74.11.4826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Slaby F., Farquhar M. G. Characterization of rat somatotroph and mammotroph secretory granules. Presence of sulfated molecules. Mol Cell Endocrinol. 1980 Apr;18(1):33–48. doi: 10.1016/0303-7207(80)90005-2. [DOI] [PubMed] [Google Scholar]
  28. Sly W. S., Fischer H. D. The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes. J Cell Biochem. 1982;18(1):67–85. doi: 10.1002/jcb.1982.240180107. [DOI] [PubMed] [Google Scholar]
  29. Smyth D. G., Zakarian S. Selective processing of beta-endorphin in regions of porcine pituitary. Nature. 1980 Dec 11;288(5791):613–615. doi: 10.1038/288613a0. [DOI] [PubMed] [Google Scholar]
  30. Viveros O. H., Diliberto E. J., Jr, Hazum E., Chang K. J. Opiate-like materials in the adrenal medulla: evidence for storage and secretion with catecholamines. Mol Pharmacol. 1979 Nov;16(3):1101–1108. [PubMed] [Google Scholar]
  31. Walter P., Blobel G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature. 1982 Oct 21;299(5885):691–698. doi: 10.1038/299691a0. [DOI] [PubMed] [Google Scholar]
  32. Winkler H. The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience. 1976;1(2):65–80. doi: 10.1016/0306-4522(76)90001-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES