Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Sep 1;97(3):593–606. doi: 10.1083/jcb.97.3.593

Uptake of lipoproteins by in situ perfused rat ovaries: identification of binding sites for high density lipoproteins

PMCID: PMC2112568  PMID: 6309865

Abstract

We have examined the uptake and distribution of 125I-labeled human high density lipoprotein, apolipoprotein E-free (hHDL3), 125I-rat high density lipoprotein (HDL), and human HDL (hHDL) reconstituted with [3H]cholesteryl linoleate after their in situ vascular perfusion to ovaries of gonadotropin-primed immature rats on days 6-9 post human chorionic gonadotropin (hCG)-injection. Some rats were treated with 4- aminopyrazolopyrimidine to reduce plasma lipoproteins and ovarian cholesteryl ester stores. Perfused ovaries were analyzed biochemically and autoradiographically, and progestin content of the ovarian effluent was quantified. Infusion of ovine luteinizing hormone and hHDL increased ovarian progestin secretion severalfold, indicating that the perfused ovary was functional. After perfusion with HDL reconstituted with [3H]cholesteryl linoleate, radioactive progestin appeared in the effluent; thus, sterol carried by exogenous HDL was converted to steroid. At 37 degrees C, uptake of 125I-hHDL3 was greatest after 15 min of perfusion with label. This was decreased by 80% when the perfusion was carried out at 4 degrees C and by 70-95% when excess unlabeled hHDL, but not human low density lipoprotein (hLDL), was included in the perfusate with 125I-hHDL. Aminopyrazolopyrimidine treatment enhanced 125I-hHDL uptake twofold. After perfusion for 15 min with 125I-hHDL3, radioactivity in the ovary was high for 3-30 min of HDL-free wash, then declined 75% by 30-60 min. With light and electron microscope autoradiography, 125I-hHDL3 was localized to corpora lutea, both along luteal cell surfaces and over their cytoplasm. The plasma membrane grains appeared to be associated with segments that lacked bristle coats. Perfusion with 125I-rat HDL produced a similar pattern of labeling. In ovaries perfused with 125I-BSA, silver grains were concentrated over macrophage-like cells but were sparse over luteal cells. We conclude that the in situ perfused rat ovary takes up 125I- hHDL3 by a temperature-dependent, lipoprotein-specific process, and that this lipoprotein is accumulated by luteal cells.

Full Text

The Full Text of this article is available as a PDF (6.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. M., Dietschy J. M. Kinetic parameters of the lipoprotein transport systems in the adrenal gland of the rat determined in vivo. Comparison of low and high density lipoproteins of human and rat origin. J Biol Chem. 1981 Jul 25;256(14):7362–7370. [PubMed] [Google Scholar]
  2. Andersen J. M., Dietschy J. M. Regulation of sterol synthesis in 15 tissues of rat. II. Role of rat and human high and low density plasma lipoproteins and of rat chylomicron remnants. J Biol Chem. 1977 Jun 10;252(11):3652–3659. [PubMed] [Google Scholar]
  3. Andersen J. M., Dietschy J. M. Relative importance of high and low density lipoproteins in the regulation of cholesterol synthesis in the adrenal gland, ovary, and testis of the rat. J Biol Chem. 1978 Dec 25;253(24):9024–9032. [PubMed] [Google Scholar]
  4. Anderson R. G., Brown M. S., Goldstein J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar;10(3):351–364. doi: 10.1016/0092-8674(77)90022-8. [DOI] [PubMed] [Google Scholar]
  5. Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
  6. Brown M. S., Goldstein J. L. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3330–3337. doi: 10.1073/pnas.76.7.3330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown M. S., Kovanen P. T., Goldstein J. L. Receptor-mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Recent Prog Horm Res. 1979;35:215–257. doi: 10.1016/b978-0-12-571135-7.50009-6. [DOI] [PubMed] [Google Scholar]
  8. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Christie M. H., Gwynne J. T., Strauss J. F., 3rd Binding of human high density lipoproteins to membranes of luteinized rat ovaries. J Steroid Biochem. 1981 Aug;14(8):671–678. doi: 10.1016/0022-4731(81)90001-7. [DOI] [PubMed] [Google Scholar]
  10. DeVilla G. O., Jr, Roberts K., Wiest W. G., Mikhail G., Flickinger G. A specific radioimmunoassay of plasma progesterone. J Clin Endocrinol Metab. 1972 Sep;35(3):458–460. doi: 10.1210/jcem-35-3-458. [DOI] [PubMed] [Google Scholar]
  11. Gwynne J. T., Strauss J. F., 3rd The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Rev. 1982 Summer;3(3):299–329. doi: 10.1210/edrv-3-3-299. [DOI] [PubMed] [Google Scholar]
  12. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Han S. S., Rajaniemi H. J., Cho M. I., Hirshfield A. N., Midgley A. R., Jr Gonadotropin receptors in rat ovarian tissue. II. Subcellular localization of LH binding sites by electron microscopic radioautography. Endocrinology. 1974 Aug;95(2):589–598. doi: 10.1210/endo-95-2-589. [DOI] [PubMed] [Google Scholar]
  14. Hirz R., Scanu A. M. Reassembly in vitro of a serum high-density lipoprotein. Biochim Biophys Acta. 1970 May 26;207(2):364–367. doi: 10.1016/0005-2795(70)90029-2. [DOI] [PubMed] [Google Scholar]
  15. Jansen H., Kalkman C., Birkenhäger J. C., Hülsmann W. C. Demonstration of a heparin-releasable liver-lipase-like activity in rat adrenals. FEBS Lett. 1980 Mar 24;112(1):30–34. doi: 10.1016/0014-5793(80)80119-0. [DOI] [PubMed] [Google Scholar]
  16. Kita T., Beisiegel U., Goldstein J. L., Schneider W. J., Brown M. S. Antibody against low density lipoprotein receptor blocks uptake of low density lipoprotein (but not high density lipoprotein) by the adrenal gland of the mouse in vivo. J Biol Chem. 1981 May 25;256(10):4701–4703. [PubMed] [Google Scholar]
  17. Kovanen P. T., Schneider W. J., Hillman G. M., Goldstein J. L., Brown M. S. Separate mechanisms for the uptake of high and low density lipoproteins by mouse adrenal gland in vivo. J Biol Chem. 1979 Jun 25;254(12):5498–5505. [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Markkanen S. O., Rajaniemi H. J. Role of internalization and degradation in the removal of receptor-bound human chorionic gonadotropin in rat luteal cells in vivo. Endocrinology. 1980 Oct;107(4):1153–1161. doi: 10.1210/endo-107-4-1153. [DOI] [PubMed] [Google Scholar]
  20. McNamara B. C., Booth R., Stansfield D. A. Evidence for an essential role for high-density lipoprotein in progesterone synthesis by rat corpus luteum. FEBS Lett. 1981 Nov 2;134(1):79–82. doi: 10.1016/0014-5793(81)80555-8. [DOI] [PubMed] [Google Scholar]
  21. Paavola L. G. The corpus luteum of the guinea pig. Fine structure at the time of maximum progesterone secretion and during regression. Am J Anat. 1977 Dec;150(4):565–603. doi: 10.1002/aja.1001500406. [DOI] [PubMed] [Google Scholar]
  22. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rosenblum M. F., Huttler C. R., Strauss J. F., 3rd Control of sterol metabolism in cultured rat granulosa cells. Endocrinology. 1981 Nov;109(5):1518–1527. doi: 10.1210/endo-109-5-1518. [DOI] [PubMed] [Google Scholar]
  24. Scanu A. M., Edelstein C. Solubility in aqueous solutions of ethanol of the small molecular weight peptides of the serum very low density and high density lipoproteins: relevance to the recovery problem during delipidation of serum lipoproteins. Anal Biochem. 1971 Dec;44(2):576–588. doi: 10.1016/0003-2697(71)90247-8. [DOI] [PubMed] [Google Scholar]
  25. Schneider W. J., Beisiegel U., Goldstein J. L., Brown M. S. Purification of the low density lipoprotein receptor, an acidic glycoprotein of 164,000 molecular weight. J Biol Chem. 1982 Mar 10;257(5):2664–2673. [PubMed] [Google Scholar]
  26. Schuler L. A., Langenberg K. K., Gwynne J. T., Strauss J. F., 3rd High density lipoprotein utilization by dispersed rat luteal cells. Biochim Biophys Acta. 1981 Jun 23;664(3):583–601. doi: 10.1016/0005-2760(81)90135-1. [DOI] [PubMed] [Google Scholar]
  27. Schuler L. A., Scavo L., Kirsch T. M., Flickinger G. L., Strauss J. F., 3rd Regulation of de novo biosynthesis of cholesterol and progestins, and formation of cholesteryl ester in rat corpus luteum by exogenous sterol. J Biol Chem. 1979 Sep 10;254(17):8662–8668. [PubMed] [Google Scholar]
  28. Strauss J. F., 3rd, MacGregor L. C., Gwynne J. T. Uptake of high density lipoproteins by rat ovaries in vivo and dispersed ovarian cells in vitro. Direct correlation of high density lipoprotein uptake with steroidogenic activity. J Steroid Biochem. 1982 Apr;16(4):525–531. doi: 10.1016/0022-4731(82)90074-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES