Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Sep 1;97(3):713–722. doi: 10.1083/jcb.97.3.713

Three-dimensional ultrastructure of a unicellular cyanobacterium

PMCID: PMC2112578  PMID: 6411738

Abstract

The first complete three-dimensional ultrastructural reconstruction of a cyanobacterium was accomplished with high-voltage electron microscopy and computer-aided assembly of serial sections. The precise arrangement of subcellular features within the cell body was very consistent from one cell to another. Specialized inclusion bodies always occupied specific intracellular locations. The photosynthetic thylakoid membranes entirely surrounded the central portion of the cytoplasm, thereby compartmentalizing it from the rest of the cell. The thylakoid membranes formed an interconnecting network of concentric shells, merging only at the inner surface of the cytoplasmic membrane. The thylakoids were in contact with the cytoplasmic membrane at several locations, apparently to maintain the overall configuration of the thylakoid system. These results clarified several unresolved issues regarding structure-function relationships in cyanobacteria.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. M. Photosynthetic membrane system in Anacystis nidulans. J Bacteriol. 1968 Sep;96(3):836–841. doi: 10.1128/jb.96.3.836-841.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. G., Brenner R. M. Accurate placement of ultrathin sections on grids; control by sol-gel phases of a gelatin flotation fluid. Stain Technol. 1971 Jan;46(1):1–6. doi: 10.3109/10520297109067809. [DOI] [PubMed] [Google Scholar]
  3. Balkwill D. L., Stevens S. E., Jr Effects of penicillin G on mesosome-like structures in Agmenellum quadruplicatum. Antimicrob Agents Chemother. 1980 Mar;17(3):506–509. doi: 10.1128/aac.17.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chao L., Bowen C. C. Purification and properties of glycogen isolated from a blue-green alga, Nostoc muscorum. J Bacteriol. 1971 Jan;105(1):331–338. doi: 10.1128/jb.105.1.331-338.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gantt E., Conti S. F. Ultrastructure of blue-green algae. J Bacteriol. 1969 Mar;97(3):1486–1493. doi: 10.1128/jb.97.3.1486-1493.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glazer A. N. Phycobilisomes: structure and dynamics. Annu Rev Microbiol. 1982;36:173–198. doi: 10.1146/annurev.mi.36.100182.001133. [DOI] [PubMed] [Google Scholar]
  7. Gromov B. V., Mamkaeva K. A. Sviaz' tilakoidov s plazmalemmoi u tsianobakterii roda Synechococcus. Mikrobiologiia. 1976 Sep-Oct;45(5):920–922. [PubMed] [Google Scholar]
  8. Holt S. C., Edwards M. R. Fine structure of the thermophilic blue-green alga Synechococcus lividus Copeland. A study of frozen-fractured-etched cells. Can J Microbiol. 1972 Feb;18(2):175–181. doi: 10.1139/m72-028. [DOI] [PubMed] [Google Scholar]
  9. Jensen T. E., Sicko-Goad L., Ayala R. P. Phosphate metabolism in blue-green algae. III. The effect of fixation and post-staining on the morphology of polyphosphate bodies in Plectonema boryanum. Cytologia (Tokyo) 1977 Apr;42(2):357–369. doi: 10.1508/cytologia.42.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kats L. N., Mineeva L. A., Semenova L. R., Gusev M. V. Elektronno-mikroskopicheskoe izuchenie struktury tilakoidov u tsianobakterii. Mikrobiologiia. 1979 May-Jun;48(3):457–460. [PubMed] [Google Scholar]
  11. Lang N. J. The fine structure of blue-green algae. Annu Rev Microbiol. 1968;22:15–46. doi: 10.1146/annurev.mi.22.100168.000311. [DOI] [PubMed] [Google Scholar]
  12. Levinthal C., Macagno E., Tountas C. Computer-aided reconstruction from serial sections. Fed Proc. 1974 Dec;33(12):2336–2340. [PubMed] [Google Scholar]
  13. Lopresti V., Macagno E. R., Levinthal C. Structure and development of neuronal connections in isogenic organisms: cellular interactions in the development of the optic lamina of Daphnia. Proc Natl Acad Sci U S A. 1973 Feb;70(2):433–437. doi: 10.1073/pnas.70.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Macagno E. R., Levinthal C., Sobel I. Three-dimensional computer reconstruction of neurons and neuronal assemblies. Annu Rev Biophys Bioeng. 1979;8:323–351. doi: 10.1146/annurev.bb.08.060179.001543. [DOI] [PubMed] [Google Scholar]
  15. Moens P. B., Moens T. Computer measurements and graphics of three-dimensional cellular ultrastructure. J Ultrastruct Res. 1981 May;75(2):131–141. doi: 10.1016/s0022-5320(81)80129-3. [DOI] [PubMed] [Google Scholar]
  16. Paulin J. J. The chondriome of selected trypanosomatids. A three-dimensional study based on serial thick sections and high voltage electron microscopy. J Cell Biol. 1975 Aug;66(2):404–413. doi: 10.1083/jcb.66.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. RIS H., SINGH R. N. Electron microscope studies on blue-green algae. J Biophys Biochem Cytol. 1961 Jan;9:63–80. doi: 10.1083/jcb.9.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shively J. M. Inclusion bodies of prokaryotes. Annu Rev Microbiol. 1974;28(0):167–187. doi: 10.1146/annurev.mi.28.100174.001123. [DOI] [PubMed] [Google Scholar]
  20. Sobel I., Levinthal C., Macagno E. R. Special techniques for the automatic computer reconstruction of neuronal structures. Annu Rev Biophys Bioeng. 1980;9:347–362. doi: 10.1146/annurev.bb.09.060180.002023. [DOI] [PubMed] [Google Scholar]
  21. Stanier R. Y., Cohen-Bazire G. Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol. 1977;31:225–274. doi: 10.1146/annurev.mi.31.100177.001301. [DOI] [PubMed] [Google Scholar]
  22. Stevens J. K., Davis T. L., Friedman N., Sterling P. A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections. Brain Res. 1980 Dec;2(3):265–293. doi: 10.1016/0165-0173(80)90010-7. [DOI] [PubMed] [Google Scholar]
  23. Stevens S. E., Paone D. A. Accumulation of Cyanophycin Granules as a Result of Phosphate Limitation in Agmenellum quadruplicatum. Plant Physiol. 1981 Apr;67(4):716–719. doi: 10.1104/pp.67.4.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ware R. W. Three-dimensional reconstruction from serial sections. Int Rev Cytol. 1975;40:325–440. doi: 10.1016/s0074-7696(08)60956-0. [DOI] [PubMed] [Google Scholar]
  25. Weibull C. Studies on thick sections of microorganisms using electron microscopes working at accelerating voltages from 60 to 1 000 kV. J Ultrastruct Res. 1974 Apr;47(20):106–114. doi: 10.1016/s0022-5320(74)90030-6. [DOI] [PubMed] [Google Scholar]
  26. Wolk C. P. Physiology and cytological chemistry blue-green algae. Bacteriol Rev. 1973 Mar;37(1):32–101. doi: 10.1128/br.37.1.32-101.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES