Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Oct 1;97(4):1303–1308. doi: 10.1083/jcb.97.4.1303

Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance

PMCID: PMC2112588  PMID: 6225785

Abstract

Rat liver Golgi vesicles were isolated by differential and density gradient centrifugation. A fraction enriched in galactosyl transferase and depleted in plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal markers was found to contain an ATP-dependent H+ pump. This proton pump was not inhibited by oligomycin but was sensitive to N- ethyl maleimide, which distinguishes it from the F0-F1 ATPase of mitochondria. GTP did not induce transport, unlike the lysosomal H+ pump. The pump was not dependent on the presence of potassium nor was it inhibited by vanadate, two of the characteristics of the gastric H+ ATPase. Addition of ATP generated a membrane potential that drove chloride uptake into the vesicles, suggesting that Golgi membranes contain a chloride conductance in parallel to an electrogenic proton pump. These results demonstrate that Golgi vesicles can form a pH difference and a membrane potential through the action of an electrogenic proton translocating ATPase.

Full Text

The Full Text of this article is available as a PDF (710.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Awqati Q. H + transport in urinary epithelia. Am J Physiol. 1978 Aug;235(2):F77–F88. doi: 10.1152/ajprenal.1978.235.2.F77. [DOI] [PubMed] [Google Scholar]
  2. Andersson G. N., Eriksson L. C. Endogenous localization of UDP-galactose:asialomucin galactosyltransferase activity in rat liver endoplasmic reticulum and Golgi apparatus. J Biol Chem. 1981 Sep 25;256(18):9633–9639. [PubMed] [Google Scholar]
  3. Apps D. K., Pryde J. G., Sutton R. The H+-translocating adenosine triphosphatase of chromaffin granule membranes. Ann N Y Acad Sci. 1982;402:134–145. doi: 10.1111/j.1749-6632.1982.tb25737.x. [DOI] [PubMed] [Google Scholar]
  4. Beauwens R., Al-Awqati Q. Active H+ transport in the turtle urinary bladder. Coupling of transport to glucose oxidation. J Gen Physiol. 1976 Oct;68(4):421–439. doi: 10.1085/jgp.68.4.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beers M. F., Carty S. E., Johnson R. G., Scarpa A. H+-ATPase and catecholamine transport in chromaffin granules. Ann N Y Acad Sci. 1982;402:116–133. doi: 10.1111/j.1749-6632.1982.tb25736.x. [DOI] [PubMed] [Google Scholar]
  6. Faller L., Jackson R., Malinowska D., Mukidjam E., Rabon E., Saccomani G., Sachs G., Smolka A. Mechanistic aspects of gastric (H+ + K+)-ATPase. Ann N Y Acad Sci. 1982;402:146–163. doi: 10.1111/j.1749-6632.1982.tb25738.x. [DOI] [PubMed] [Google Scholar]
  7. Forgac M., Cantley L., Wiedenmann B., Altstiel L., Branton D. Clathrin-coated vesicles contain an ATP-dependent proton pump. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1300–1303. doi: 10.1073/pnas.80.5.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Galloway C. J., Dean G. E., Marsh M., Rudnick G., Mellman I. Acidification of macrophage and fibroblast endocytic vesicles in vitro. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3334–3338. doi: 10.1073/pnas.80.11.3334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gluck S., Kelly S., Al-Awqati Q. The proton translocating ATPase responsible for urinary acidification. J Biol Chem. 1982 Aug 25;257(16):9230–9233. [PubMed] [Google Scholar]
  11. Kaczorowski G. J., Vandlen R. L., Katz G. M., Reuben J. P. Regulation of excitation-secretion coupling by thyrotropin-releasing hormone (TRH): evidence for TRH receptor-ion channel coupling in cultured pituitary cells. J Membr Biol. 1983;71(1-2):109–118. doi: 10.1007/BF01870679. [DOI] [PubMed] [Google Scholar]
  12. Ledger P. W., Nishimoto S. K., Hayashi S., Tanzer M. L. Abnormal glycosylation of human fibronectin secreted in the presence of monensin. J Biol Chem. 1983 Jan 10;258(1):547–554. [PubMed] [Google Scholar]
  13. O'Neal S. G., Rhoads D. B., Racker E. Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases. Biochem Biophys Res Commun. 1979 Aug 13;89(3):845–850. doi: 10.1016/0006-291x(79)91855-2. [DOI] [PubMed] [Google Scholar]
  14. Ohkuma S., Moriyama Y., Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. doi: 10.1073/pnas.79.9.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ray D., Cornell E., Schneider D. Evidence for degradation of intracellular protein in liver lysosomes of fasted rats. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1246–1250. doi: 10.1016/0006-291x(76)90788-9. [DOI] [PubMed] [Google Scholar]
  16. Schneider D. L. ATP-dependent acidification of intact and disrupted lysosomes. Evidence for an ATP-driven proton pump. J Biol Chem. 1981 Apr 25;256(8):3858–3864. [PubMed] [Google Scholar]
  17. Stone D. K., Xie X. S., Racker E. An ATP-driven proton pump in clathrin-coated vesicles. J Biol Chem. 1983 Apr 10;258(7):4059–4062. [PubMed] [Google Scholar]
  18. Waggoner A. Optical probes of membrane potential. J Membr Biol. 1976 Jun 30;27(4):317–334. doi: 10.1007/BF01869143. [DOI] [PubMed] [Google Scholar]
  19. Wibo M., Thinès-Sempoux D., Amar-Costesec A., Beaufay H., Godelaine D. Analytical study of microsomes and isolated subcellular membranes from rat liver VIII. Subfractionation of preparations enriched with plasma membranes, outer mitochondrial membranes, or Golgi complex membranes. J Cell Biol. 1981 Jun;89(3):456–474. doi: 10.1083/jcb.89.3.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Young J. D., Unkeless J. C., Kaback H. R., Cohn Z. A. Macrophage membrane potential changes associated with gamma 2b/gamma 1 Fc receptor-ligand binding. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1357–1361. doi: 10.1073/pnas.80.5.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES