Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Oct 1;97(4):1156–1168. doi: 10.1083/jcb.97.4.1156

Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells

PMCID: PMC2112599  PMID: 6684660

Abstract

Mouse peritoneal macrophages can be induced to accumulate cholesteryl esters by incubating them in the presence of acetylated low density lipoprotein. The cholesteryl esters are sequestered in neutral lipid droplets that remain in the cell even when the acetylated low density lipoprotein is removed from the culture media. Previous biochemical studies have determined that the cholesterol component of cholesteryl ester droplets constantly turns over with a half time of 24 h by a cyclic process of de-esterification and re-esterification. We have used morphologic techniques to determine the spatial relationship of cholesteryl ester, free cholesterol, and lipase activity during normal turnover and when turnover is disrupted. Lipid droplets were surrounded by numerous 7.5-10.0-nm filaments; moreover, at focal sites on the margin of each droplet there were whorles of concentrically arranged membrane that penetrated the matrix. Histochemically detectable lipase activity was associated with these stacks of membrane. Using filipin as a light and electron microscopic probe for free cholesterol, we determined that a pool of free cholesterol was associated with each lipid droplet. Following incubation in the presence of the exogenous cholesterol acceptor, high density lipoprotein, the cholesteryl ester droplets disappeared and were replaced with lipid droplets of a different lipid composition. Inhibition of cholesterol esterification caused cholesteryl ester droplets to disappear and free cholesterol to accumulate in numerous myelin-like structures in the body of the cell.

Full Text

The Full Text of this article is available as a PDF (8.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. S., Dana S. E., Goldstein J. L. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Feb 10;249(3):789–796. [PubMed] [Google Scholar]
  2. Brown M. S., Goldstein J. L., Krieger M., Ho Y. K., Anderson R. G. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol. 1979 Sep;82(3):597–613. doi: 10.1083/jcb.82.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown M. S., Ho Y. K., Goldstein J. L. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem. 1980 Oct 10;255(19):9344–9352. [PubMed] [Google Scholar]
  4. Bulkley B. H., Buja L. M., Ferrans V. J., Bulkley G. B., Roberts W. C. Tuberous xanthoma in homozygous type II hyperlipoproteinemia. A histologic, histochemical, and electron microscopical study. Arch Pathol. 1975 Jun;99(6):293–300. [PubMed] [Google Scholar]
  5. Elias P. M., Friend D. S., Goerke J. Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin. J Histochem Cytochem. 1979 Sep;27(9):1247–1260. doi: 10.1177/27.9.479568. [DOI] [PubMed] [Google Scholar]
  6. Elias P. M., Goerke J., Friend D. S., Brown B. E. Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes. J Cell Biol. 1978 Aug;78(2):577–596. doi: 10.1083/jcb.78.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
  8. Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979 Jan;76(1):333–337. doi: 10.1073/pnas.76.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hajjar D. P., Minick C. R., Fowler S. Arterial neutral cholesteryl esterase. A hormone-sensitive enzyme distinct from lysosomal cholesteryl esterase. J Biol Chem. 1983 Jan 10;258(1):192–198. [PubMed] [Google Scholar]
  10. Hajjar D. P., Weksler B. B., Falcone D. J., Hefton J. M., Tack-Goldman K., Minick C. R. Prostacyclin modulates cholesteryl ester hydrolytic activity by its effect on cyclic adenosine monophosphate in rabbit aortic smooth muscle cells. J Clin Invest. 1982 Sep;70(3):479–488. doi: 10.1172/JCI110639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haley N. J., Shio H., Fowler S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. I. Resolution of aortic cell populations by metrizamide density gradient centrifugation. Lab Invest. 1977 Sep;37(3):287–296. [PubMed] [Google Scholar]
  12. Khoo J. C., Jarett L., Mayer S. E., Steinberg D. Subcellular distribution of and epinephrine-induced changes in hormone-sensitive lipase, phosphorylase, and phosphorylase kinase in rat adipocytes. J Biol Chem. 1972 Aug 10;247(15):4812–4818. [PubMed] [Google Scholar]
  13. Khoo J. C., Mahoney E. M., Steinberg D. Neutral cholesterol esterase activity in macrophages and its enhancement by cAMP-dependent protein kinase. J Biol Chem. 1981 Dec 25;256(24):12659–12661. [PubMed] [Google Scholar]
  14. Krieger M., Brown M. S., Faust J. R., Goldstein J. L. Replacement of endogenous cholesteryl esters of low density lipoprotein with exogenous cholesteryl linoleate. Reconstitution of a biologically active lipoprotein particle. J Biol Chem. 1978 Jun 25;253(12):4093–4101. [PubMed] [Google Scholar]
  15. Kruth H. S., Vaughan M. Quantification of low density lipoprotein binding and cholesterol accumulation by single human fibroblasts using fluorescence microscopy. J Lipid Res. 1980 Jan;21(1):123–130. [PubMed] [Google Scholar]
  16. Luckenbill L. M., Cohen A. S. The association of lipid droplets with cytoplasmic filaments in avian subsynovial adipose tissue. J Cell Biol. 1966 Oct;31(1):195–199. [PubMed] [Google Scholar]
  17. Madreiter H., von Deimling O. Esterase. IX. Zur Esteraseaktivität in Lipidtropfen der Mäuseleber und Mäuseniere. Histochemie. 1973;36(2):139–148. doi: 10.1007/BF00304389. [DOI] [PubMed] [Google Scholar]
  18. Montesano R., Ravazzola M., Orci L. Filipin labelling of lipid droplets in lactating rat mammary gland. Cell Biol Int Rep. 1983 Mar;7(3):194–194. doi: 10.1016/0309-1651(83)90224-2. [DOI] [PubMed] [Google Scholar]
  19. Nishikawa T., Mikami K., Saito Y., Tamura Y., Kumagai A. Studies on cholesterol esterase in the rat adrenal. Endocrinology. 1981 Mar;108(3):932–936. doi: 10.1210/endo-108-3-932. [DOI] [PubMed] [Google Scholar]
  20. Norman A. W., Demel R. A., de Kruyff B., van Deenen L. L. Studies on the biological properties of polyene antibiotics. Evidence for the direct interaction of filipin with cholesterol. J Biol Chem. 1972 Mar 25;247(6):1918–1929. [PubMed] [Google Scholar]
  21. Novikoff A. B., Novikoff P. M., Rosen O. M., Rubin C. S. Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol. 1980 Oct;87(1):180–196. doi: 10.1083/jcb.87.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robinson J. M., Karnovsky M. J. Evaluation of the polyene antibiotic filipin as a cytochemical probe for membrane cholesterol. J Histochem Cytochem. 1980 Feb;28(2):161–168. doi: 10.1177/28.2.6766487. [DOI] [PubMed] [Google Scholar]
  23. Shio H., Haley N. J., Fowler S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. III. Intracellular localization of cholesterol and cholesteryl ester. Lab Invest. 1979 Aug;41(2):160–167. [PubMed] [Google Scholar]
  24. Wigglesworth V. B. 'Catalysomes' or enzyme caps on lipid droplets: an intracellular organelle. Nature. 1966 May 14;210(5037):759–759. doi: 10.1038/210759a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES