Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Oct 1;97(4):1119–1130. doi: 10.1083/jcb.97.4.1119

Ionic mechanisms in secretagogue-induced morphological changes in rat parotid gland

PMCID: PMC2112613  PMID: 6619189

Abstract

When 10(-5) M carbachol was added to parotid tissue slices incubated in buffer containing Ca++, watery vacuoles were formed in the cells. The percent volume density of vacuoles, as measured from 0.5-micron sections, increased from 0.64 +/- 0.15 SE (n = 7) to 3.09 +/- 0.99 (n = 5) in 10 min and, finally, to 7.27 +/- 1.88 (n = 4) in 30 min. In electron micrographs, most of the vacuoles appeared to arise from a location near the Golgi apparatus. Condensation of nuclear chromatin and a conformational change in mitochondria were also noted immediately after stimulation. The percent volume density values returned to basal levels with the addition of either 5 mM EGTA or 10(-6) M atropine after the addition of carbachol. Nuclei and mitochondria returned to normal configurations. In the presence of either 1 mM ouabain or high K+, or in the absence of added Ca++, carbachol failed to induce vacuole formation. However, low Na+ medium did not prevent the formation of vacuoles due to carbachol. Ultrastructural changes in nuclei and mitochondria were consistently associated with the appearance of vacuoles. Since both high K+ and ouabain blocked vacuole formation, it is unlikely that Na+ or K+ movements were important for the response. Rather, receptor-activated Ca++ influx, which is likely to be inhibited by depolarizing agents (such as high K+ or ouabain), is probably the more important factor in vacuole formation and other concomitant ultrastructural changes.

Full Text

The Full Text of this article is available as a PDF (6.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basbaum C. B., Ueki I., Brezina L., Nadel J. A. Tracheal submucosal gland serous cells stimulated in vitro with adrenergic and cholinergic agonists. A morphometric study. Cell Tissue Res. 1981;220(3):481–498. doi: 10.1007/BF00216752. [DOI] [PubMed] [Google Scholar]
  2. Batzri S., Amsterdam A., Selinger Z., Ohad I., Schramm M. Epinephrine-induced vacuole formation in parotid gland cells and its independence of the secretory process. Proc Natl Acad Sci U S A. 1971 Jan;68(1):121–123. doi: 10.1073/pnas.68.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Farber J. L. Biology of disease: membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis. Lab Invest. 1982 Aug;47(2):114–123. [PubMed] [Google Scholar]
  4. Garrett J. R., Harrop T. J. Reflex influences on watery vacuole formation in parotid acinar cells of rats [proceedings]. J Physiol. 1978 Nov;284:86P–87P. [PubMed] [Google Scholar]
  5. Landis C. A., Putney J. W., Jr Calcium and receptor regulation of radiosodium uptake by dispersed rat parotid acinar cells. J Physiol. 1979 Dec;297(0):369–377. doi: 10.1113/jphysiol.1979.sp013045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ledger P. W., Uchida N., Tanzer M. L. Immunocytochemical localization of procollagen and fibronectin in human fibroblasts: effects of the monovalent ionophore, monensin. J Cell Biol. 1980 Dec;87(3 Pt 1):663–671. doi: 10.1083/jcb.87.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leslie B. A., Putney J. W., Jr, Sherman J. M. alpha-Adrenergic, beta-adrenergic and cholinergic mechanisms for amylase secretion by rat parotid gland in vitro. J Physiol. 1976 Sep;260(2):351–370. doi: 10.1113/jphysiol.1976.sp011519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mills J. W., Quinton P. M. Formation of stimulus-induced vacuoles in serous cells of tracheal submucosal glands. Am J Physiol. 1981 Jul;241(1):C18–C24. doi: 10.1152/ajpcell.1981.241.1.C18. [DOI] [PubMed] [Google Scholar]
  9. Parod R. J., Putney J. W., Jr Stimulus-permeability coupling in rat lacrimal gland. Am J Physiol. 1980 Aug;239(2):G106–G113. doi: 10.1152/ajpgi.1980.239.2.G106. [DOI] [PubMed] [Google Scholar]
  10. Pedersen G. L., Petersen O. H. Membrane potential measurement in parotid acinar cells. J Physiol. 1973 Oct;234(1):217–227. doi: 10.1113/jphysiol.1973.sp010342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Petersen O. H., Gray T. A., Hall R. A. The relationship between stimulation-induced potassium release and amylase secretion in the mouse parotid. Pflugers Arch. 1977 Jul 19;369(3):207–211. doi: 10.1007/BF00582186. [DOI] [PubMed] [Google Scholar]
  12. Petersen O. H. The importance of extracellular sodium and potassium for acetylcholine-evoked salivary secretion. Experientia. 1970 Oct 15;26(10):1103–1104. doi: 10.1007/BF02112700. [DOI] [PubMed] [Google Scholar]
  13. Poggioli J., Leslie B. A., McKinney J. S., Weiss S. J., Putney J. W., Jr Actions of ionomycin in rat parotid gland. J Pharmacol Exp Ther. 1982 Apr;221(1):247–253. [PubMed] [Google Scholar]
  14. Putney J. W., Jr Oxygen consumption in the parotid gland. Life Sci. 1978 May 15;22(19):1731–1735. doi: 10.1016/0024-3205(78)90625-2. [DOI] [PubMed] [Google Scholar]
  15. Putney J. W., Jr, Parod R. J. Calcium-mediated effects of carbachol on cation pumping and Na uptake in rat parotid gland. J Pharmacol Exp Ther. 1978 May;205(2):449–458. [PubMed] [Google Scholar]
  16. Putney J. W., Jr Role of calcium in the fade of the potassium release response in the rat parotid gland. J Physiol. 1978 Aug;281:383–394. doi: 10.1113/jphysiol.1978.sp012429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Putney J. W., Jr Stimulation of 45Ca influx in rat parotid gland by carbachol. J Pharmacol Exp Ther. 1976 Dec;199(3):526–537. [PubMed] [Google Scholar]
  18. Putney J. W., Jr Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol Rev. 1978 Jun;30(2):209–245. [PubMed] [Google Scholar]
  19. Putney J. W., Jr, VanDeWalle C. M., Leslie B. A. Receptor control of calcium influx in parotid acinar cells. Mol Pharmacol. 1978 Nov;14(6):1046–1053. [PubMed] [Google Scholar]
  20. Quinton P. M. Possible mechanisms of stimulus-induced vacuolation in serous cells of tracheal secretory glands. Am J Physiol. 1981 Jul;241(1):C25–C32. doi: 10.1152/ajpcell.1981.241.1.C25. [DOI] [PubMed] [Google Scholar]
  21. Schmidt H. W., Herzog V., Miller F. Oxygen consumption of isolated acini from rat parotid gland. Eur J Cell Biol. 1980 Feb;20(3):201–208. [PubMed] [Google Scholar]
  22. Schramm M., Selinger Z. The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J Cyclic Nucleotide Res. 1975;1(4):181–192. [PubMed] [Google Scholar]
  23. Selinger Z., Batzri S., Eimerl S., Schramm M. Calcium and energy requirements for K + release mediated by the epinephrine -receptor in rat parotid slices. J Biol Chem. 1973 Jan 10;248(1):369–372. [PubMed] [Google Scholar]
  24. Somlyo A. P., Garfield R. E., Chacko S., Somlyo A. V. Golgi organelle response to the antibiotic X537A. J Cell Biol. 1975 Aug;66(2):425–443. doi: 10.1083/jcb.66.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tapp R. L. Anoxic and secretory vacuolation in the acinar cells of the pancreas. Q J Exp Physiol Cogn Med Sci. 1970 Jan;55(1):1–15. doi: 10.1113/expphysiol.1970.sp002045. [DOI] [PubMed] [Google Scholar]
  26. Tapp R. L., Trowell O. A. The experimental production of watery vacuolation in the acinar cells of the submandibular gland. J Physiol. 1967 Jan;188(2):191–205. doi: 10.1113/jphysiol.1967.sp008133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Trump B. F., Berezesky I. K., Laiho K. U., Osornio A. R., Mergner W. J., Smith M. W. The role of calcium in cell injury. A review. Scan Electron Microsc. 1980;(Pt 2):437-62, 492. [PubMed] [Google Scholar]
  28. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilcox D. K., Kitson R. P., Widnell C. C. Inhibition of pinocytosis in rat embryo fibroblasts treated with monensin. J Cell Biol. 1982 Mar;92(3):859–864. doi: 10.1083/jcb.92.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES