Abstract
When 10(-5) M carbachol was added to parotid tissue slices incubated in buffer containing Ca++, watery vacuoles were formed in the cells. The percent volume density of vacuoles, as measured from 0.5-micron sections, increased from 0.64 +/- 0.15 SE (n = 7) to 3.09 +/- 0.99 (n = 5) in 10 min and, finally, to 7.27 +/- 1.88 (n = 4) in 30 min. In electron micrographs, most of the vacuoles appeared to arise from a location near the Golgi apparatus. Condensation of nuclear chromatin and a conformational change in mitochondria were also noted immediately after stimulation. The percent volume density values returned to basal levels with the addition of either 5 mM EGTA or 10(-6) M atropine after the addition of carbachol. Nuclei and mitochondria returned to normal configurations. In the presence of either 1 mM ouabain or high K+, or in the absence of added Ca++, carbachol failed to induce vacuole formation. However, low Na+ medium did not prevent the formation of vacuoles due to carbachol. Ultrastructural changes in nuclei and mitochondria were consistently associated with the appearance of vacuoles. Since both high K+ and ouabain blocked vacuole formation, it is unlikely that Na+ or K+ movements were important for the response. Rather, receptor-activated Ca++ influx, which is likely to be inhibited by depolarizing agents (such as high K+ or ouabain), is probably the more important factor in vacuole formation and other concomitant ultrastructural changes.
Full Text
The Full Text of this article is available as a PDF (6.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Basbaum C. B., Ueki I., Brezina L., Nadel J. A. Tracheal submucosal gland serous cells stimulated in vitro with adrenergic and cholinergic agonists. A morphometric study. Cell Tissue Res. 1981;220(3):481–498. doi: 10.1007/BF00216752. [DOI] [PubMed] [Google Scholar]
- Batzri S., Amsterdam A., Selinger Z., Ohad I., Schramm M. Epinephrine-induced vacuole formation in parotid gland cells and its independence of the secretory process. Proc Natl Acad Sci U S A. 1971 Jan;68(1):121–123. doi: 10.1073/pnas.68.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farber J. L. Biology of disease: membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis. Lab Invest. 1982 Aug;47(2):114–123. [PubMed] [Google Scholar]
- Garrett J. R., Harrop T. J. Reflex influences on watery vacuole formation in parotid acinar cells of rats [proceedings]. J Physiol. 1978 Nov;284:86P–87P. [PubMed] [Google Scholar]
- Landis C. A., Putney J. W., Jr Calcium and receptor regulation of radiosodium uptake by dispersed rat parotid acinar cells. J Physiol. 1979 Dec;297(0):369–377. doi: 10.1113/jphysiol.1979.sp013045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ledger P. W., Uchida N., Tanzer M. L. Immunocytochemical localization of procollagen and fibronectin in human fibroblasts: effects of the monovalent ionophore, monensin. J Cell Biol. 1980 Dec;87(3 Pt 1):663–671. doi: 10.1083/jcb.87.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leslie B. A., Putney J. W., Jr, Sherman J. M. alpha-Adrenergic, beta-adrenergic and cholinergic mechanisms for amylase secretion by rat parotid gland in vitro. J Physiol. 1976 Sep;260(2):351–370. doi: 10.1113/jphysiol.1976.sp011519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills J. W., Quinton P. M. Formation of stimulus-induced vacuoles in serous cells of tracheal submucosal glands. Am J Physiol. 1981 Jul;241(1):C18–C24. doi: 10.1152/ajpcell.1981.241.1.C18. [DOI] [PubMed] [Google Scholar]
- Parod R. J., Putney J. W., Jr Stimulus-permeability coupling in rat lacrimal gland. Am J Physiol. 1980 Aug;239(2):G106–G113. doi: 10.1152/ajpgi.1980.239.2.G106. [DOI] [PubMed] [Google Scholar]
- Pedersen G. L., Petersen O. H. Membrane potential measurement in parotid acinar cells. J Physiol. 1973 Oct;234(1):217–227. doi: 10.1113/jphysiol.1973.sp010342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen O. H., Gray T. A., Hall R. A. The relationship between stimulation-induced potassium release and amylase secretion in the mouse parotid. Pflugers Arch. 1977 Jul 19;369(3):207–211. doi: 10.1007/BF00582186. [DOI] [PubMed] [Google Scholar]
- Petersen O. H. The importance of extracellular sodium and potassium for acetylcholine-evoked salivary secretion. Experientia. 1970 Oct 15;26(10):1103–1104. doi: 10.1007/BF02112700. [DOI] [PubMed] [Google Scholar]
- Poggioli J., Leslie B. A., McKinney J. S., Weiss S. J., Putney J. W., Jr Actions of ionomycin in rat parotid gland. J Pharmacol Exp Ther. 1982 Apr;221(1):247–253. [PubMed] [Google Scholar]
- Putney J. W., Jr Oxygen consumption in the parotid gland. Life Sci. 1978 May 15;22(19):1731–1735. doi: 10.1016/0024-3205(78)90625-2. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr, Parod R. J. Calcium-mediated effects of carbachol on cation pumping and Na uptake in rat parotid gland. J Pharmacol Exp Ther. 1978 May;205(2):449–458. [PubMed] [Google Scholar]
- Putney J. W., Jr Role of calcium in the fade of the potassium release response in the rat parotid gland. J Physiol. 1978 Aug;281:383–394. doi: 10.1113/jphysiol.1978.sp012429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Putney J. W., Jr Stimulation of 45Ca influx in rat parotid gland by carbachol. J Pharmacol Exp Ther. 1976 Dec;199(3):526–537. [PubMed] [Google Scholar]
- Putney J. W., Jr Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol Rev. 1978 Jun;30(2):209–245. [PubMed] [Google Scholar]
- Putney J. W., Jr, VanDeWalle C. M., Leslie B. A. Receptor control of calcium influx in parotid acinar cells. Mol Pharmacol. 1978 Nov;14(6):1046–1053. [PubMed] [Google Scholar]
- Quinton P. M. Possible mechanisms of stimulus-induced vacuolation in serous cells of tracheal secretory glands. Am J Physiol. 1981 Jul;241(1):C25–C32. doi: 10.1152/ajpcell.1981.241.1.C25. [DOI] [PubMed] [Google Scholar]
- Schmidt H. W., Herzog V., Miller F. Oxygen consumption of isolated acini from rat parotid gland. Eur J Cell Biol. 1980 Feb;20(3):201–208. [PubMed] [Google Scholar]
- Schramm M., Selinger Z. The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J Cyclic Nucleotide Res. 1975;1(4):181–192. [PubMed] [Google Scholar]
- Selinger Z., Batzri S., Eimerl S., Schramm M. Calcium and energy requirements for K + release mediated by the epinephrine -receptor in rat parotid slices. J Biol Chem. 1973 Jan 10;248(1):369–372. [PubMed] [Google Scholar]
- Somlyo A. P., Garfield R. E., Chacko S., Somlyo A. V. Golgi organelle response to the antibiotic X537A. J Cell Biol. 1975 Aug;66(2):425–443. doi: 10.1083/jcb.66.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tapp R. L. Anoxic and secretory vacuolation in the acinar cells of the pancreas. Q J Exp Physiol Cogn Med Sci. 1970 Jan;55(1):1–15. doi: 10.1113/expphysiol.1970.sp002045. [DOI] [PubMed] [Google Scholar]
- Tapp R. L., Trowell O. A. The experimental production of watery vacuolation in the acinar cells of the submandibular gland. J Physiol. 1967 Jan;188(2):191–205. doi: 10.1113/jphysiol.1967.sp008133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trump B. F., Berezesky I. K., Laiho K. U., Osornio A. R., Mergner W. J., Smith M. W. The role of calcium in cell injury. A review. Scan Electron Microsc. 1980;(Pt 2):437-62, 492. [PubMed] [Google Scholar]
- VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilcox D. K., Kitson R. P., Widnell C. C. Inhibition of pinocytosis in rat embryo fibroblasts treated with monensin. J Cell Biol. 1982 Mar;92(3):859–864. doi: 10.1083/jcb.92.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]