Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Oct 1;97(4):1294–1298. doi: 10.1083/jcb.97.4.1294

Calmodulin-stimulated protein kinase activity from rat pancreas

PMCID: PMC2112629  PMID: 6619194

Abstract

Previous work from our laboratory has demonstrated that neurohumoral stimulation of the exocrine pancreas is associated with the phosphorylation of the Mr 29,000 ribosomal protein S6. In a cell-free system using pancreatic postmicrosomal supernatant as the kinase donor, we found that the following co-factors stimulate the phosphorylation of the Mr 29,000 ribosomal protein: calcium with calmodulin, calcium with phosphatidyl serine, and cAMP. These findings suggest that the pancreas contains a calcium-calmodulin-dependent protein kinase (CaM-PK) that can phosphorylate the Mr 29,000 ribosomal protein. A CaM-PK activity was partially purified sequentially by ion exchange, gel filtration, and calmodulin-affinity chromatography. Phosphorylation of the Mr 29,000 ribosomal protein by the partially purified CaM-PK was dependent on the presence of both calcium and calmodulin and not on the other co- factors. The CaM-PK fraction contained a phosphoprotein of Mr 51,000 whose phosphorylation was also dependent on calcium and calmodulin. When 125I-calmodulin-binding proteins from the CaM-PK fraction were identified using electrophoretic transfers of SDS-polyacrylamide gels, a single Mr 51,000 protein was labeled. The preparation enriched in CaM- PK activity contained an Mr 51,000 protein that underwent phosphorylation in a calcium-calmodulin-dependent manner and an Mr 51,000 calmodulin-binding protein. It is therefore possible that the CaM-PK may comprise a calmodulin-binding phosphoprotein component of Mr 51,000.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad Z., DePaoli-Roach A. A., Roach P. J. Purification and characterization of a rabbit liver calmodulin-dependent protein kinase able to phosphorylate glycogen synthase. J Biol Chem. 1982 Jul 25;257(14):8348–8355. [PubMed] [Google Scholar]
  2. Burnham D. B., Williams J. A. Effects of carbachol, cholecystokinin, and insulin on protein phosphorylation in isolated pancreatic acini. J Biol Chem. 1982 Sep 10;257(17):10523–10528. [PubMed] [Google Scholar]
  3. Carlin R. K., Grab D. J., Siekevitz P. Function of a calmodulin in postsynaptic densities. III. Calmodulin-binding proteins of the postsynaptic density. J Cell Biol. 1981 Jun;89(3):449–455. doi: 10.1083/jcb.89.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chafouleas J. G., Dedman J. R., Munjaal R. P., Means A. R. Calmodulin. Development and application of a sensitive radioimmunoassay. J Biol Chem. 1979 Oct 25;254(20):10262–10267. [PubMed] [Google Scholar]
  5. Freedman S. D., Jamieson J. D. Hormone-induced protein phosphorylation. I. Relationship between secretagogue action and endogenous protein phosphorylation in intact cells from the exocrine pancreas and parotid. J Cell Biol. 1982 Dec;95(3):903–908. doi: 10.1083/jcb.95.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freedman S. D., Jamieson J. D. Hormone-induced protein phosphorylation. II. Localization to the ribosomal fraction from rat exocrine pancreas and parotid of a 29,000-dalton protein phosphorylated in situ in response to secretagogues. J Cell Biol. 1982 Dec;95(3):909–917. doi: 10.1083/jcb.95.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Freedman S. D., Jamieson J. D. Hormone-induced protein phosphorylation. III. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both Ca2+ and cAMP in vitro. J Cell Biol. 1982 Dec;95(3):918–923. doi: 10.1083/jcb.95.3.918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gershoni J. M., Palade G. E. Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to a positively charged membrane filter. Anal Biochem. 1982 Aug;124(2):396–405. doi: 10.1016/0003-2697(82)90056-2. [DOI] [PubMed] [Google Scholar]
  9. Gershoni J. M., Palade G. E. Protein blotting: principles and applications. Anal Biochem. 1983 May;131(1):1–15. doi: 10.1016/0003-2697(83)90128-8. [DOI] [PubMed] [Google Scholar]
  10. Goldenring J. R., Gonzalez B., DeLorenzo R. J. Isolation of brain Ca2+-calmodulin tubulin kinase containing calmodulin binding proteins. Biochem Biophys Res Commun. 1982 Sep 16;108(1):421–428. doi: 10.1016/0006-291x(82)91883-6. [DOI] [PubMed] [Google Scholar]
  11. Issinger O. G., Beier H., Speichermann N., Flokerzi V., Hofmann F. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Biochem J. 1980 Jan 1;185(1):89–99. doi: 10.1042/bj1850089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kennedy M. B., McGuinness T., Greengard P. A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates Synapsin I: partial purification and characterization. J Neurosci. 1983 Apr;3(4):818–831. doi: 10.1523/JNEUROSCI.03-04-00818.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  14. Payne M. E., Schworer C. M., Soderling T. R. Purification and characterization of rabbit liver calmodulin-dependent glycogen synthase kinase. J Biol Chem. 1983 Feb 25;258(4):2376–2382. [PubMed] [Google Scholar]
  15. Schulz I. Messenger role of calcium in function of pancreatic acinar cells. Am J Physiol. 1980 Nov;239(5):G335–G347. doi: 10.1152/ajpgi.1980.239.5.G335. [DOI] [PubMed] [Google Scholar]
  16. Traugh J. A., Porter G. G. A comparison of ribosomal proteins from rabbit reticulocytes phosphorylated in situ and in vitro. Biochemistry. 1976 Feb 10;15(3):610–616. doi: 10.1021/bi00648a025. [DOI] [PubMed] [Google Scholar]
  17. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  18. Wrenn R. W., Katoh N., Kuo J. F. Stimulation by phospholipid of calcium-dependent phosphorylation of endogenous proteins from mammalian tissues. Biochim Biophys Acta. 1981 Aug 17;676(2):266–269. doi: 10.1016/0304-4165(81)90195-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES