Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Oct 1;97(4):1179–1190. doi: 10.1083/jcb.97.4.1179

Regulation of growth and differentiation of a rat hepatoma cell line by the synergistic interactions of hormones and collagenous substrata

PMCID: PMC2112632  PMID: 6137487

Abstract

Serum-free, hormonally defined media have been developed for optimal growth of a rat hepatoma cell line. The cells' hormonal requirements for growth are dramatically altered both qualitatively and quantitatively by whether they were plated onto tissue culture plastic or collagenous substrata. On collagenous substrata, the cells required insulin, glucagon, growth hormone, prolactin, and linoleic acid (bound to BSA), and zinc, copper, and selenium. For growth on tissue culture plastic, the cells required the above factors at higher concentrations plus several additional factors: transferrin, hydrocortisone, and triiodothyronine. To ascertain the relative influence of hormones versus substratum on the growth and differentiation of rat hepatoma cells, various parameters of growth and of liver-specific and housekeeping functions were compared in cells grown in serum-free, hormonally supplemented, or serum-supplemented medium and on either tissue culture plastic or type I collagen gels. The substratum was found to be the primary determinant of attachment and survival of the cells. Even in serum-free media, the cells showed attachment and survival efficiencies of 40-50% at low seeding densities and even higher efficiencies at high seeding densities when the cells were plated onto collagenous substrata. However, optimal attachment and survival efficiencies of the cells on collagenous substrata still required either serum or hormonal supplements. On tissue culture plastic, there was no survival of the cells at any seeding density without either serum or hormonal supplements added to the medium. A defined medium designed for cells plated on tissue culture plastic, containing increased levels of hormones plus additional factors over those in the defined medium designed for cells on collagenous substrata, was found to permit attachment and survival of the cells plated into serum-free medium and onto tissue culture plastic. Growth of the cells was influenced by both substrata and hormones. When plated onto collagen gel substrata as compared with tissue culture plastic, the cells required fewer hormones and growth factors in the serum-free, hormone-supplemented media to achieve optimal growth rates. Growth rates of the cells at low and high seeding densities were equivalent in the hormonally and serum-supplemented media as long as comparisons were made on the same substratum and the hormonally supplemented medium used was the one designed for that substratum. For a given medium, either serum or hormonally supplemented, the saturation densities were highest for tissue culture plastic as compared with collagen gels.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armato U., Draghi E., Andreis P. G. Effect of glucagon and insulin on the growth of neonatal rat hepatocytes in primary tissue culture. Endocrinology. 1978 Apr;102(4):1155–1166. doi: 10.1210/endo-102-4-1155. [DOI] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnes D., Sato G. Serum-free cell culture: a unifying approach. Cell. 1980 Dec;22(3):649–655. doi: 10.1016/0092-8674(80)90540-1. [DOI] [PubMed] [Google Scholar]
  4. Ben-Ze'ev A., Farmer S. R., Penman S. Protein synthesis requires cell-surface contact while nuclear events respond to cell shape in anchorage-dependent fibroblasts. Cell. 1980 Sep;21(2):365–372. doi: 10.1016/0092-8674(80)90473-0. [DOI] [PubMed] [Google Scholar]
  5. Bissell D. M., Guzelian P. S. Phenotypic stability of adult rat hepatocytes in primary monolayer culture. Ann N Y Acad Sci. 1980;349:85–98. doi: 10.1111/j.1749-6632.1980.tb29518.x. [DOI] [PubMed] [Google Scholar]
  6. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bucher M. L., Swaffield M. N. Regulation of hepatic regeneration in rats by synergistic action of insulin and glucagon. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1157–1160. doi: 10.1073/pnas.72.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  9. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  10. David G., Bernfield M. Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells. J Cell Biol. 1981 Oct;91(1):281–286. doi: 10.1083/jcb.91.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Derman E., Krauter K., Walling L., Weinberger C., Ray M., Darnell J. E., Jr Transcriptional control in the production of liver-specific mRNAs. Cell. 1981 Mar;23(3):731–739. doi: 10.1016/0092-8674(81)90436-0. [DOI] [PubMed] [Google Scholar]
  12. Evans G. W. Copper homeostasis in the mammalian system. Physiol Rev. 1973 Jul;53(3):535–570. doi: 10.1152/physrev.1973.53.3.535. [DOI] [PubMed] [Google Scholar]
  13. Feramisco J. R., Smart J. E., Burridge K., Helfman D. M., Thomas G. P. Co-existence of vinculin and a vinculin-like protein of higher molecular weight in smooth muscle. J Biol Chem. 1982 Sep 25;257(18):11024–11031. [PubMed] [Google Scholar]
  14. Gospodarowicz D., Delgado D., Vlodavsky I. Permissive effect of the extracellular matrix on cell proliferation in vitro. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4094–4098. doi: 10.1073/pnas.77.7.4094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gospodarowicz D., Greenburg G., Birdwell C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 1978 Nov;38(11 Pt 2):4155–4171. [PubMed] [Google Scholar]
  16. Goto Y., Paterson M., Listowsky I. Iron uptake and regulation of ferritin synthesis by hepatoma cells in hormone-supplemented serum-free media. J Biol Chem. 1983 Apr 25;258(8):5248–5255. [PubMed] [Google Scholar]
  17. Grover P. L., Sims P. Conjugations with glutathione. Distribution of glutathione S-aryltransferase in vertebrate species. Biochem J. 1964 Mar;90(3):603–606. doi: 10.1042/bj0900603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ham R. G., McKeehan W. L. Media and growth requirements. Methods Enzymol. 1979;58:44–93. doi: 10.1016/s0076-6879(79)58126-9. [DOI] [PubMed] [Google Scholar]
  19. Harpold M. M., Evans R. M., Salditt-Georgieff M., Darnell J. E. Production of mRNA in Chinese hamster cells: relationship of the rate of synthesis to the cytoplasmic concentration of nine specific mRNA sequences. Cell. 1979 Aug;17(4):1025–1035. doi: 10.1016/0092-8674(79)90341-6. [DOI] [PubMed] [Google Scholar]
  20. Kalinyak J. E., Taylor J. M. Rat glutathione S-transferase. Cloning of double-stranded cDNA and induction of its mRNA. J Biol Chem. 1982 Jan 10;257(1):523–530. [PubMed] [Google Scholar]
  21. Kleinman H. K., Klebe R. J., Martin G. R. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981 Mar;88(3):473–485. doi: 10.1083/jcb.88.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leffert H. L., Koch K. S., Moran T., Rubalcava B. Hormonal control of rat liver regeneration. Gastroenterology. 1979 Jun;76(6):1470–1482. [PubMed] [Google Scholar]
  23. Leinwand L., Strair R., Ruddle F. H. Phenotypic and molecular expression of albumin in rat hepatoma x L cell hybrids. Exp Cell Res. 1978 Sep;115(2):261–268. doi: 10.1016/0014-4827(78)90280-x. [DOI] [PubMed] [Google Scholar]
  24. McKeehan W. L., Hamilton W. G., Ham R. G. Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2023–2027. doi: 10.1073/pnas.73.6.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McKeehan W. L., McKeehan K. A. Serum factors modify the cellular requirement for Ca2+, K+, Mg2+, phosphate ions, and 2-oxocarboxylic acids for multiplication of normal human fibroblasts. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3417–3421. doi: 10.1073/pnas.77.6.3417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Michalopoulos G., Pitot H. C. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp Cell Res. 1975 Aug;94(1):70–78. doi: 10.1016/0014-4827(75)90532-7. [DOI] [PubMed] [Google Scholar]
  27. Motwani N. M., Unakar N. J., Roy A. K. Multiple hormone requirement for the synthesis of alpha 2u-globulin by monolayers of rat hepatocytes in long term primary culture. Endocrinology. 1980 Nov;107(5):1606–1613. doi: 10.1210/endo-107-5-1606. [DOI] [PubMed] [Google Scholar]
  28. Noguchi T., Cantor A. H., Scott M. L. Mode of action of selenium and vitamin E in prevention of exudative diathesis in chicks. J Nutr. 1973 Oct;103(10):1502–1511. doi: 10.1093/jn/103.10.1502. [DOI] [PubMed] [Google Scholar]
  29. Ohtake H., Hasegawa K., Koga M. Zinc-binding protein in the livers of neonatal, normal and partially hepatectomized rats. Biochem J. 1978 Sep 15;174(3):999–1005. doi: 10.1042/bj1740999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pardoll D. M., Vogelstein B., Coffey D. S. A fixed site of DNA replication in eucaryotic cells. Cell. 1980 Feb;19(2):527–536. doi: 10.1016/0092-8674(80)90527-9. [DOI] [PubMed] [Google Scholar]
  31. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  32. Rojkind M., Gatmaitan Z., Mackensen S., Giambrone M. A., Ponce P., Reid L. M. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J Cell Biol. 1980 Oct;87(1):255–263. doi: 10.1083/jcb.87.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rotruck J. T., Pope A. L., Ganther H. E., Swanson A. B., Hafeman D. G., Hoekstra W. G. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973 Feb 9;179(4073):588–590. doi: 10.1126/science.179.4073.588. [DOI] [PubMed] [Google Scholar]
  34. Salomon D. S., Liotta L. A., Kidwell W. R. Differential response to growth factor by rat mammary epithelium plated on different collagen substrata in serum-free medium. Proc Natl Acad Sci U S A. 1981 Jan;78(1):382–386. doi: 10.1073/pnas.78.1.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sirica A. E., Richards W., Tsukada Y., Sattler C. A., Pitot H. C. Fetal phenotypic expression by adult rat hepatocytes on collagen gel/nylon meshes. Proc Natl Acad Sci U S A. 1979 Jan;76(1):283–287. doi: 10.1073/pnas.76.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Strair R. K., Yap S. H., Nadal-Ginard B., Shafritz D. A. Identification of a high molecular weight presumptive precursor to albumin mRNA in the nucleus of rat liver and hepatoma cell line H4AZC2. J Biol Chem. 1978 Mar 10;253(5):1328–1331. [PubMed] [Google Scholar]
  37. Swierenga S. H., Whitfield J. F., Boynton A. L., MacManus J. P., Rixon R. H., Sikorska M., Tsang B. K., Walker P. R. Regulation of proliferation of normal and neoplastic rat liver cells by calcium and cyclic AMP. Ann N Y Acad Sci. 1980;349:294–311. doi: 10.1111/j.1749-6632.1980.tb29534.x. [DOI] [PubMed] [Google Scholar]
  38. Van Campen D. R., Scaife P. U. Zinc interference with copper absorption in rats. J Nutr. 1967 Apr;91(4):473–476. doi: 10.1093/jn/91.4.473. [DOI] [PubMed] [Google Scholar]
  39. Wicha M. S., Lowrie G., Kohn E., Bagavandoss P., Mahn T. Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc Natl Acad Sci U S A. 1982 May;79(10):3213–3217. doi: 10.1073/pnas.79.10.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wilde C. D., Crowther C. E., Cripe T. P., Gwo-Shu Lee M., Cowan N. J. Evidence that a human beta-tubulin pseudogene is derived from its corresponding mRNA. Nature. 1982 May 6;297(5861):83–84. doi: 10.1038/297083a0. [DOI] [PubMed] [Google Scholar]
  41. Wong B. S., Chenoweth M. E., Dunn A. Possible growth hormone control of liver glutamine synthetase activity in rats. Endocrinology. 1980 Jan;106(1):268–274. doi: 10.1210/endo-106-1-268. [DOI] [PubMed] [Google Scholar]
  42. Zern M. A., Chakraborty P. R., Ruiz-Opazo N., Yap S. H., Shafritz D. A. Development and use of a rat albumin cDNA clone to evaluate the effect of chronic ethanol administration on hepatic protein synthesis. Hepatology. 1983 May-Jun;3(3):317–322. doi: 10.1002/hep.1840030307. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES