Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 May 1;96(5):1189–1196. doi: 10.1083/jcb.96.5.1189

Regional distribution of N-acetyl-D-galactosamine residues in the glycocalyx of glomerular podocytes

PMCID: PMC2112644  PMID: 6302101

Abstract

Helix pomatia lectin (HPL) bound to colloidal gold was used as a specific cytochemical probe for the localization of terminal nonreducing N-acetyl-D-galactosamine residues in thin sections of rat kidney. In the glomerulus, lectin-binding sites were associated only with the podocyte foot process bases and were not found on the free cell surface of podocytes or on any other glomerular components. Gold- particle label was often arranged in the form of clusters which extended from the foot process base to the lamina rare externa and lamina densa of the basement membrane. In contrast, wheat germ lectin (WGL)-binding sites (beta-[1 leads to 4] linked N-acetyl-D-glucosamine residues and N-acetylneuraminic acid residues) were found in all regions of the podocyte plasma membrane and on the cell surface of all other glomerular cell types. In addition, WGL-binding sites were present in all three layers of the glomerular basement membrane (GBM) as well as in the mesangial matrix. A quantitative evaluation of the pattern of labeling for HPL-binding sites together with the sugar specificity of this lectin suggest that a component of the glycocalyx is being detected rather than a basement membrane component. This was confirmed by the absence of H. pomatia lectin-binding sites in preparations of isolated GBM which retained, however, wheat germ lectin- binding sites. These data show that the glycocalyx of the foot process base is a highly specialized cell surface domain with respect to its carbohydrate composition.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A. K., Neuberger A., Sharon N. The purification, composition and specificity of wheat-germ agglutinin. Biochem J. 1973 Jan;131(1):155–162. doi: 10.1042/bj1310155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrews P. M. Cationized ferritin binding to anionic surfaces in normal and aminonucleoside nephrotic kidneys. Am J Anat. 1981 Oct;162(2):89–106. doi: 10.1002/aja.1001620202. [DOI] [PubMed] [Google Scholar]
  3. Andrews P. M. Investigations of cytoplasmic contractile and cytoskeletal elements in the kidney glomerulus. Kidney Int. 1981 Nov;20(5):549–562. doi: 10.1038/ki.1981.176. [DOI] [PubMed] [Google Scholar]
  4. Bretton R., Bariety J. A comparative ultrastructural localization of concanavalin A, wheat germ and Ricinus communis on glomeruli of normal rat kidney. J Histochem Cytochem. 1976 Oct;24(10):1093–1100. doi: 10.1177/24.10.977938. [DOI] [PubMed] [Google Scholar]
  5. Carlson E. C., Brendel K., Hjelle J. T., Meezan E. Ultrastructural and biochemical analyses of isolated basement membranes from kidney glomeruli and tubules and brain and retinal microvessels. J Ultrastruct Res. 1978 Jan;62(1):26–53. doi: 10.1016/s0022-5320(78)80028-8. [DOI] [PubMed] [Google Scholar]
  6. Courtoy P. J., Timpl R., Farquhar M. G. Comparative distribution of laminin, type IV collagen, and fibronectin in the rat glomerulus. J Histochem Cytochem. 1982 Sep;30(9):874–886. doi: 10.1177/30.9.7130672. [DOI] [PubMed] [Google Scholar]
  7. Geoghegan W. D., Ackerman G. A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem. 1977 Nov;25(11):1187–1200. doi: 10.1177/25.11.21217. [DOI] [PubMed] [Google Scholar]
  8. Groniowski J., Biczyskowa W., Walski M. Electron microscope studies on the surface coat of the nephron. J Cell Biol. 1969 Mar;40(3):585–601. doi: 10.1083/jcb.40.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones D. B. Mucosubstances of the glomerulus. Lab Invest. 1969 Aug;21(2):119–125. [PubMed] [Google Scholar]
  10. Kanwar Y. S., Farquhar M. G. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol. 1979 Apr;81(1):137–153. doi: 10.1083/jcb.81.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Latta H., Johnston W. H., Stanley T. M. Sialoglycoproteins and filtration barriers in the glomerular capillary wall. J Ultrastruct Res. 1975 Jun;51(3):354–376. doi: 10.1016/s0022-5320(75)80100-6. [DOI] [PubMed] [Google Scholar]
  12. Maxwell M. H. Two rapid and simple methods used for the removal of resins from 1.0 micron thick epoxy sections. J Microsc. 1978 Mar;112(2):253–255. doi: 10.1111/j.1365-2818.1978.tb01174.x. [DOI] [PubMed] [Google Scholar]
  13. Orci L., Brown D., Amherdt M., Perrelet A. Distribution of intramembrane particles and filipin-sterol complexes in plasma membranes of kidney. I. Corpuscle of Malpighi. Lab Invest. 1982 Jun;46(6):545–553. [PubMed] [Google Scholar]
  14. Orci L., Singh A., Amherdt M., Brown D., Perrelet A. Microheterogeneity of protein and sterol content in kidney podocyte membrane. Nature. 1981 Oct 22;293(5834):646–647. doi: 10.1038/293646a0. [DOI] [PubMed] [Google Scholar]
  15. Roth J., Bendayan M., Carlemalm E., Villiger W., Garavito M. Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem. 1981 May;29(5):663–671. doi: 10.1177/29.5.6166664. [DOI] [PubMed] [Google Scholar]
  16. Roth J., Binder M. Coloidal gold, ferritin and peroxidase as markers for electron microscopic double labeling lectin techniques. J Histochem Cytochem. 1978 Mar;26(3):163–169. doi: 10.1177/26.3.632554. [DOI] [PubMed] [Google Scholar]
  17. Roth J., Wagner M. Peroxidase and gold complexes of lectins for double labeling of surface-binding sites by electron microscopy. J Histochem Cytochem. 1977 Oct;25(10):1181–1184. doi: 10.1177/25.10.915241. [DOI] [PubMed] [Google Scholar]
  18. Roth J., Wagner M. Redistribution and internalisation of anti-AH1e (anti-AHP)- and Concanavalin A-binding sites. Exp Pathol (Jena) 1977;14(6):311–320. doi: 10.1016/s0014-4908(77)80050-1. [DOI] [PubMed] [Google Scholar]
  19. Spiro R. G. Studies on the renal glomerular basement membrane. Nature of the carbohydrate units and their attachment to the peptide portion. J Biol Chem. 1967 Apr 25;242(8):1923–1932. [PubMed] [Google Scholar]
  20. Spiro R. G. The structure of the disaccharide unit of the renal glomerular basement membrane. J Biol Chem. 1967 Oct 25;242(20):4813–4823. [PubMed] [Google Scholar]
  21. Tokuyasu K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 1980 Jul;12(4):381–403. doi: 10.1007/BF01011956. [DOI] [PubMed] [Google Scholar]
  22. Uhlenbruck G., Prokop O. An agglutinin from Helix pomatia, which reacts with terminal N-acetyl-D-galactosamine. Vox Sang. 1966 Jul-Aug;11(4):519–520. doi: 10.1111/j.1423-0410.1966.tb04250.x. [DOI] [PubMed] [Google Scholar]
  23. Wagner M., Wagner B. Immunelektronenmikroskopische Lokalisation von Rezeptoren mit terminalem N-Acetyl-D-Galaktosamin auf der Oberfläche von Ehrlich-Aszites-Tumor-Zellen mit einem Protektin von Helix pomatia. Z Immunitatsforsch Exp Klin Immunol. 1973 Dec;146(3):274–282. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES