Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 May 1;96(5):1306–1315. doi: 10.1083/jcb.96.5.1306

Identity and origin of the ATPase activity associated with neuronal microtubules. II. Identification of a 50,000-dalton polypeptide with ATPase activity similar to F-1 ATPase from mitochondria

PMCID: PMC2112650  PMID: 6221023

Abstract

We determined that the ATPase activity contained in preparations of neuronal microtubules is associated with a 50,000-dalton polypeptide by four different methods: (a) photoaffinity labeling of the pelletable ATPase fraction with [gamma-32P]-8-azido-ATP; (b) analysis of two- dimensional gels (native gel X SDS slab gel) of an ATPase fraction solubilized by treatment with dichloromethane; (c) ATPase purification by glycerol gradient sedimentation and gel filtration chromatography of a solvent-released ATPase fraction, (d) demonstration of the binding of affinity-purified antibody to the 50-kdalton polypeptide to ATPase activity in vitro. Beginning with preparations of microtubules we have purified the ATPase activity greater than 700-fold and estimate that the purified enzyme has a specific activity of 20 mumol Pi x mg-1 x min- 1 and comprises 80-90% of the total ATPase activity associated with neuronal microtubules. With affinity-purified antibody we also demonstrate cross-reactivity to the 50-kdalton subunits of mitochondrial F-1 ATPase and show that the antibody specifically labels mitochondria in PtK-2 cells. Biochemical comparisons of the enzymes reveal similar but not identical subunit composition and sensitivity to mitochondrial ATPase inhibitors. These studies indicate that the principal ATPase activity associated with microtubules is not contained in high molecular weight proteins such as dynein or MAPs and support the hypothesis that the 50-kdalton ATPase is a membrane protein and may be derived from mitochondria or membrane vesicles with F-1-like ATPase activity.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anker H. S. A solubilizable acrylamide gel for electrophoresis. FEBS Lett. 1970 Apr 16;7(3):293–293. doi: 10.1016/0014-5793(70)80185-5. [DOI] [PubMed] [Google Scholar]
  2. Apps D. K., Glover L. A. Isolation and characterization of magnesium adenosinetriphosphatase from the chromaffin granule membrane. FEBS Lett. 1978 Jan 15;85(2):254–258. doi: 10.1016/0014-5793(78)80467-0. [DOI] [PubMed] [Google Scholar]
  3. Apps D. K., Pryde J. G., Sutton R., Phillips J. H. Inhibition of adenosine triphosphatase, 5-hydroxytryptamine transport and proton-translocation activities of resealed chromaffin-granule 'ghosts'. Biochem J. 1980 Aug 15;190(2):273–282. doi: 10.1042/bj1900273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Apps D. K., Schatz G. An adenosine triphosphatase isolated from chromaffin-granulate membranes is closely similar to F1-adenosine triphosphatase of mitochondria. Eur J Biochem. 1979 Oct 15;100(2):411–419. doi: 10.1111/j.1432-1033.1979.tb04184.x. [DOI] [PubMed] [Google Scholar]
  5. Beechey R. B., Hubbard S. A., Linnett P. E., Mitchell A. D., Munn E. A. A simple and rapid method for the preparation of adenosine triphosphatase from submitochondrial particles. Biochem J. 1975 Jun;148(3):533–537. doi: 10.1042/bj1480533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett V., Stenbuck P. J. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J Biol Chem. 1979 Apr 10;254(7):2533–2541. [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Czarnecki J., Geahlen R., Haley B. Synthesis and use of azido photoaffinity analogs of adenine and guanine nucleotides. Methods Enzymol. 1979;56:642–653. doi: 10.1016/0076-6879(79)56061-3. [DOI] [PubMed] [Google Scholar]
  9. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  10. Gallily R., Garvey J. S. Primary stimulation of rats and mice with hemocyanin in soluton and adsorbed on bentonite. J Immunol. 1968 Nov;101(5):924–929. [PubMed] [Google Scholar]
  11. HUIJING F., SLATER E. C. The use of oligomycin as an inhibitor of oxidative phosphorylation. J Biochem. 1961 Jun;49:493–501. doi: 10.1093/oxfordjournals.jbchem.a127334. [DOI] [PubMed] [Google Scholar]
  12. Haley B. E., Hoffman J. F. Interactions of a photo-affinity ATP analog with cation-stimulated adenosine triphosphatases of human red cell membranes. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3367–3371. doi: 10.1073/pnas.71.9.3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haley B. E. Photoaffinity labeling of adenosine 3',5'-cyclic monophosphate binding sites of human red cell membranes. Biochemistry. 1975 Aug 26;14(17):3852–3857. doi: 10.1021/bi00688a018. [DOI] [PubMed] [Google Scholar]
  14. Hoyer P. B., Owens J. R., Haley B. E. The use of photoaffinity probes to elucidate molecular mechanisms of nucleotide-regulated phenomena. Ann N Y Acad Sci. 1980;346:280–301. doi: 10.1111/j.1749-6632.1980.tb22104.x. [DOI] [PubMed] [Google Scholar]
  15. Knowles A. F., Penefsky H. S. The subunit structure of beef heart mitochondrial adenosine triphosphatase. Physical and chemical properties of isolated subunits. J Biol Chem. 1972 Oct 25;247(20):6624–6630. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  18. Murphy D. B., Hiebsch R. R., Wallis K. T. Identity and Origin of the ATPase activity associated with neuronal microtubules. I. The ATPase activity is associated with membrane vesicles. J Cell Biol. 1983 May;96(5):1298–1305. doi: 10.1083/jcb.96.5.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Newman P. J., Kahn R. A., Hines A. Detection and characterization of monoclonal antibodies to platelet membrane proteins. J Cell Biol. 1981 Jul;90(1):249–253. doi: 10.1083/jcb.90.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pollard T. D., Korn E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem. 1973 Jul 10;248(13):4682–4690. [PubMed] [Google Scholar]
  21. SCHNEIDER W. C., HOGEBOOM G. H. Cytochemical studies of mammalian tissues; the isolation of cell components by differential centrifugation: a review. Cancer Res. 1951 Jan;11(1):1–22. [PubMed] [Google Scholar]
  22. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  23. Stephens R. E. High-resolution preparative SDS-polyacrylamide gel electrophoresis: fluorescent visualization and electrophoretic elution-concentration of protein bands. Anal Biochem. 1975 May 12;65(1-2):369–379. doi: 10.1016/0003-2697(75)90521-7. [DOI] [PubMed] [Google Scholar]
  24. Toll L., Howard B. D. Evidence that an ATPase and a protonmotive force function in the transport of acetylcholine into storage vesicles. J Biol Chem. 1980 Mar 10;255(5):1787–1789. [PubMed] [Google Scholar]
  25. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vigers G. A., Ziegler F. D. Azide inhibition of mitochondrial ATPase. Biochem Biophys Res Commun. 1968 Jan 11;30(1):83–88. doi: 10.1016/0006-291x(68)90716-x. [DOI] [PubMed] [Google Scholar]
  27. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
  28. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  29. White H. D., Coughlin B. A., Purich D. L. Adenosine triphosphatase activity of bovine brain microtubule protein. J Biol Chem. 1980 Jan 25;255(2):486–491. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES