Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 May 1;96(5):1425–1434. doi: 10.1083/jcb.96.5.1425

Effect of cell shape change on the function and differentiation of rabbit mammary cells in culture

M Haeuptle, YLM Suard, E Bogenmann, H Reggio, L Racine, J Kraehenbuhl
PMCID: PMC2112657  PMID: 6841452

Abstract

We examined the role of cell shape, cytodifferentiation, and tissue topography on the induction and maintenance of functional differentiation in rabbit mammary cells grown as primary cultures on two-dimensional collagen surfaces or in three-dimensional collagen matrices. Mammary glands from mid-pregnant rabbits were dissociated into single cells, and epithelial cells were enriched by isopycnic centrifugation. Small spheroids of epithelial cells (approximately 50 cells) that formed on a rotary shaker were plated on or embedded in collagen gels. The cells were cultured for 1 d in serum-containing medium and then for up to 25 d in chemically defined medium. In some experiments, epithelial monolayers on gels were mechanically freed from the dishes on day 2 or 5. These gels retracted and formed floating collagen gels. On attached collagen gels, flat monolayers of a single cell type developed within a few days. The cells synthesized DNA until the achievement of confluence but did not accumulate milk proteins. No morphological changes were induced by prolactin (PRL). On floating gels, two cell types appeared in the absence of cell proliferation. The cells in direct contact with the medium became cuboidal and developed intracellular organelles typical of secretory cells. PRL-induced lipogenesis, resulting in large fat droplets filling the apical cytoplasm and accumulation of casein and α-lactalbumin in vesicles surrounding the fat droplets. We detected tranferrin in the presence or absence of PRL intracellularly in small vesicles but also in the collagen matrix in contact with the cell layer. The second cell type, rich in microfilaments and reminiscent of the myoepithelial cells, was situated between the secretory cell layer and the collagen matrix. In embedding gels, the cells formed hollow ductlike structures, which grew continuously in size. Secretory cells formed typical lumina distended by secretory products. We found few microfilament-rich cells in contact with the collagen gels. Storage and secretion of fat, caseins and alpha-lactalbumin required the presence of PRL, whereas the accumulation and vectorial discharge of transferrin was prolactin independent. There was no differentiation gradient between the tip and the cent of the outgrowth, since DNA synthesis and milk protein storage were random along the tubular structures. These results indicate that establishment of functional polarity and induction of cytodifferentiation are influenced by the nature of the interaction of the cells with the collagen structure. The morphological differentiation in turn plays an important role in the synthesis, storage, and secretion of fat and milk proteins.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett D. C., Armstrong B. L., Okada S. M. Reconstitution of branching tubules from two cloned mammary cell types in culture. Dev Biol. 1981 Oct 15;87(1):193–199. doi: 10.1016/0012-1606(81)90072-5. [DOI] [PubMed] [Google Scholar]
  2. Bennett D. C., Peachey L. A., Durbin H., Rudland P. S. A possible mammary stem cell line. Cell. 1978 Sep;15(1):283–298. doi: 10.1016/0092-8674(78)90104-6. [DOI] [PubMed] [Google Scholar]
  3. Burwen S. J., Pitelka D. R. Secretory function of lactating mouse mammary epithelial cells cultured on collagen gels. Exp Cell Res. 1980 Apr;126(2):249–262. doi: 10.1016/0014-4827(80)90263-3. [DOI] [PubMed] [Google Scholar]
  4. Chambard M., Gabrion J., Mauchamp J. Influence of collagen gel on the orientation of epithelial cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. J Cell Biol. 1981 Oct;91(1):157–166. doi: 10.1083/jcb.91.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cutler L. S., Chaudhry A. P. Differentiation of the myoepithelial cells of the rat submandibular gland in vivo and in vitro: an ultrastructural study. J Morphol. 1973 Jul;140(3):343–354. doi: 10.1002/jmor.1051400307. [DOI] [PubMed] [Google Scholar]
  6. David G., Bernfield M. Defective basal lamina formation by transformed mammary epithelial cells: a reduced effect of collagen on basal lamina (heparan sulfate-rich) proteoglycan degradation. J Cell Physiol. 1982 Jan;110(1):56–62. doi: 10.1002/jcp.1041100110. [DOI] [PubMed] [Google Scholar]
  7. Dayal R., Hurlimann J., Suard Y. M., Kraehenbuhl J. P. Chemical and immunochemical characterization of caseins and the major whey proteins of rabbit milk. Biochem J. 1982 Jan 1;201(1):71–79. doi: 10.1042/bj2010071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devinoy E., Houdebine L. M., Delouis C. Role of prolactin and glucocorticoids in the expression of casein genes in rabbit mammary gland organ culture. Quantification of casein mRNA. Biochim Biophys Acta. 1978 Feb 16;517(2):360–366. doi: 10.1016/0005-2787(78)90202-2. [DOI] [PubMed] [Google Scholar]
  9. Devinoy E., Houdebine L. M. Effects of glucocorticoids on casein gene expression in the rabbit. Eur J Biochem. 1977 May 16;75(2):411–416. doi: 10.1111/j.1432-1033.1977.tb11542.x. [DOI] [PubMed] [Google Scholar]
  10. Emerman J. T., Enami J., Pitelka D. R., Nandi S. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4466–4470. doi: 10.1073/pnas.74.10.4466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Emerman J. T., Pitelka D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro. 1977 May;13(5):316–328. doi: 10.1007/BF02616178. [DOI] [PubMed] [Google Scholar]
  12. Foster C. S., Edwards P. A., Dinsdale E. A., Neville A. M. Monoclonal antibodies to the human mammary gland. I. Distribution of determinants in non-neoplastic mammary and extra mammary tissues. Virchows Arch A Pathol Anat Histol. 1982;394(3):279–293. doi: 10.1007/BF00430671. [DOI] [PubMed] [Google Scholar]
  13. Franke W. W., Schmid E., Freudenstein C., Appelhans B., Osborn M., Weber K., Keenan T. W. Intermediate-sized filaments of the prekeratin type in myoepithelial cells. J Cell Biol. 1980 Mar;84(3):633–654. doi: 10.1083/jcb.84.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haeuptle M. T., Aubert M. L., Djiane J., Kraehenbuhl J. P. Binding sites for lactogenic and somatogenic hormones from rabbit mammary gland and liver. J Biol Chem. 1983 Jan 10;258(1):305–314. [PubMed] [Google Scholar]
  15. Houdebine L. M. Effects of prolactin and progesterone on expression of casein genes. Titration of casein mRNA by hybridization with complementary DNA. Eur J Biochem. 1976 Sep;68(1):219–225. doi: 10.1111/j.1432-1033.1976.tb10781.x. [DOI] [PubMed] [Google Scholar]
  16. Katiyar V. N., Enami J., Nandi S. Effect of polypeptide hormones on stimulation of casein secretion by mouse mammary epithelial cells grown on floating collagen gels. In Vitro. 1978 Sep;14(9):771–774. doi: 10.1007/BF02617970. [DOI] [PubMed] [Google Scholar]
  17. Kühn L. C., Kraehenbuhl J. P. The membrane receptor for polymeric immunoglobulin is structurally related to secretory component. Isolation and characterization of membrane secretory component from rabbit liver and mammary gland. J Biol Chem. 1981 Dec 10;256(23):12490–12495. [PubMed] [Google Scholar]
  18. Mostov K. E., Kraehenbuhl J. P., Blobel G. Receptor-mediated transcellular transport of immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7257–7261. doi: 10.1073/pnas.77.12.7257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Radnor C. J. Myoepithelial cell differentiation in rat mammary glands. J Anat. 1972 Apr;111(Pt 3):381–398. [PMC free article] [PubMed] [Google Scholar]
  20. Rojkind M., Gatmaitan Z., Mackensen S., Giambrone M. A., Ponce P., Reid L. M. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J Cell Biol. 1980 Oct;87(1):255–263. doi: 10.1083/jcb.87.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schultz G. S., Sarras M. P., Jr, Gunther G. R., Hull B. E., Alicea H. A., Gorelick F. S., Jamieson J. D. Guinea pig pancreatic acini prepared with purified collagenase. Exp Cell Res. 1980 Nov;130(1):49–62. doi: 10.1016/0014-4827(80)90041-5. [DOI] [PubMed] [Google Scholar]
  22. Shannon J. M., Pitelka D. R. The influence of cell shape on the induction of functional differentiation in mouse mammary cells in vitro. In Vitro. 1981 Nov;17(11):1016–1028. doi: 10.1007/BF02618428. [DOI] [PubMed] [Google Scholar]
  23. Suard Y. M., Haeuptle M. T., Farinon E., Kraehenbuhl J. P. Cell proliferation and milk protein gene expression in rabbit mammary cell cultures. J Cell Biol. 1983 May;96(5):1435–1442. doi: 10.1083/jcb.96.5.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Suard Y. M., Tosi M., Kraehenbuhl J. P. Characterization of the translation products of the major mRNA species from rabbit lactating mammary glands and construction of bacterial recombinants containing casein and alpha-lactalbumin complementary DNA. Biochem J. 1982 Jan 1;201(1):81–90. doi: 10.1042/bj2010081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Supowit S. C., Rosen J. M. Hormonal induction of casein gene expression limited to a small subpopulation of 7,12-dimethylbenz(a)anthracene-induced mammary tumor cells. Cancer Res. 1982 Apr;42(4):1355–1360. [PubMed] [Google Scholar]
  26. Tokuyasu K. T. A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol. 1973 May;57(2):551–565. doi: 10.1083/jcb.57.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Topper Y. J., Freeman C. S. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev. 1980 Oct;60(4):1049–1106. doi: 10.1152/physrev.1980.60.4.1049. [DOI] [PubMed] [Google Scholar]
  28. Warburton M. J., Ferns S. A., Rudland P. S. Enhanced synthesis of basement membrane proteins during the differentiation of rat mammary tumour epithelial cells into myoepithelial-like cells in vitro. Exp Cell Res. 1982 Feb;137(2):373–380. doi: 10.1016/0014-4827(82)90038-6. [DOI] [PubMed] [Google Scholar]
  29. Wicha M. S., Liotta L. A., Garbisa S., Kidwell W. R. Basement membrane collagen requirements for attachment and growth of mammary epithelium. Exp Cell Res. 1979 Nov;124(1):181–190. doi: 10.1016/0014-4827(79)90268-4. [DOI] [PubMed] [Google Scholar]
  30. Wicha M. S., Lowrie G., Kohn E., Bagavandoss P., Mahn T. Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc Natl Acad Sci U S A. 1982 May;79(10):3213–3217. doi: 10.1073/pnas.79.10.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yang J., Richards J., Bowman P., Guzman R., Enami J., McCormick K., Hamamoto S., Pitelka D., Nandi S. Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3401–3405. doi: 10.1073/pnas.76.7.3401. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES