Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 May 1;96(5):1414–1424. doi: 10.1083/jcb.96.5.1414

The structure of membrane crystals of the light-harvesting chlorophyll a/b protein complex

PMCID: PMC2112667  PMID: 6341379

Abstract

Membrane crystals of the light-harvesting chlorophyll a/b protein complex from pea chloroplasts were investigated using electron microscopy and image analysis. The membrane crystals formed upon precipitation of the detergent-solubilized complex with mono- and divalent cations in the presence of small amounts of Triton X-100. The crystalline fraction contained two polypeptides of 25,000 and 27,000 mol wt. Freeze-dried and freeze-etched specimens showed a periodic honeycomb structure on the surface of membrane crystals. Double replicas of freeze-fractured sheets showed a hexagonal lattice of particles on both fracture faces. Image analysis of negatively stained membrane crystals suggested that they had threefold rather than sixfold symmetry in projection. A projection map at 20-A resolution revealed two triangular structural units of opposite handedness per crystallographic unit cell. The structural units appeared to be inserted bidirectionally into the membrane, alternating in orientation perpendicular to the membrane plane.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson B., Anderson J. M. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta. 1980 Dec 3;593(2):427–440. doi: 10.1016/0005-2728(80)90078-x. [DOI] [PubMed] [Google Scholar]
  2. Apel K. The light-harvesting chlorophylla a/b.protein complex of the green alga Acetabularia mediterranea. Isolation and characterization of two subunits. Biochim Biophys Acta. 1977 Nov 17;462(2):390–402. doi: 10.1016/0005-2728(77)90137-2. [DOI] [PubMed] [Google Scholar]
  3. Bennett J. Chloroplast phosphoproteins. Phosphorylation of polypeptides of the light-harvesting chlorophyll protein complex. Eur J Biochem. 1979 Aug 15;99(1):133–137. doi: 10.1111/j.1432-1033.1979.tb13239.x. [DOI] [PubMed] [Google Scholar]
  4. Burke J. J., Ditto C. L., Arntzen C. J. Involvement of the light-harvesting complex in cation regulation of excitation energy distribution in chloroplasts. Arch Biochem Biophys. 1978 Apr 15;187(1):252–263. doi: 10.1016/0003-9861(78)90031-0. [DOI] [PubMed] [Google Scholar]
  5. Dulley J. R., Grieve P. A. A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem. 1975 Mar;64(1):136–141. doi: 10.1016/0003-2697(75)90415-7. [DOI] [PubMed] [Google Scholar]
  6. Dunkley P. R., Anderson J. M. The light-harvesting chlorophyll a/b-protein complex from barley thylakoid membranes. Polypeptide composition and characterization of an oligomer. Biochim Biophys Acta. 1979 Jan 11;545(1):174–187. [PubMed] [Google Scholar]
  7. Henderson R. The structure of the purple membrane from Halobacterium hallobium: analysis of the X-ray diffraction pattern. J Mol Biol. 1975 Apr 5;93(2):123–138. doi: 10.1016/0022-2836(75)90123-0. [DOI] [PubMed] [Google Scholar]
  8. Izawa S., Good N. E. Effect of Salts and Electron Transport on the Conformation of Isolated Chloroplasts. II. Electron Microscopy. Plant Physiol. 1966 Mar;41(3):544–552. doi: 10.1104/pp.41.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Li J., Hollingshead C. Formation of crystalline arrays of chlorophyll a/b - light-harvesting protein by membrane reconstitution. Biophys J. 1982 Jan;37(1):363–370. doi: 10.1016/S0006-3495(82)84684-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McDonnel A., Staehelin L. A. Adhesion between liposomes mediated by the chlorophyll a/b light-harvesting complex isolated from chloroplast membranes. J Cell Biol. 1980 Jan;84(1):40–56. doi: 10.1083/jcb.84.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller K. R., Miller G. J., McIntyre K. R. The light-harvesting chlorpohyll-protein complex of photosystem II. Its location in the photosynthetic membrane. J Cell Biol. 1976 Nov;71(2):624–638. doi: 10.1083/jcb.71.2.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mullet J. E., Arntzen C. J. Simulation of grana stacking in a model membrane system. Mediation by a purified light-harvesting pigment-protein complex from chloroplasts. Biochim Biophys Acta. 1980 Jan 4;589(1):100–117. doi: 10.1016/0005-2728(80)90135-8. [DOI] [PubMed] [Google Scholar]
  14. Ryrie I. J., Anderson J. M., Goodchild D. J. The role of the light-harvesting chlorophyll a/b protein complex in chloroplast membrane stacking. Cation-induced aggregation of reconstituted proteoliposomes. Eur J Biochem. 1980 Jun;107(2):345–354. doi: 10.1111/j.1432-1033.1980.tb06035.x. [DOI] [PubMed] [Google Scholar]
  15. Ryrie I. J., Fuad N. Membrane adhesion in reconstituted proteoliposomes containing the light-harvesting chlorophyll a/b-protein complex: the role of charged surface groups. Arch Biochem Biophys. 1982 Apr 1;214(2):475–488. doi: 10.1016/0003-9861(82)90051-0. [DOI] [PubMed] [Google Scholar]
  16. Siegel C. O., Jordan A. E., Miller K. R. Addition of lipid to the photosynthetic membrane: effects on membrane structure and energy transfer. J Cell Biol. 1981 Oct;91(1):113–125. doi: 10.1083/jcb.91.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sleytr U. B., Robards A. W. Understanding the artefact problem in freeze-fracture replication: a review. J Microsc. 1982 Apr;126(Pt 1):101–122. doi: 10.1111/j.1365-2818.1982.tb00361.x. [DOI] [PubMed] [Google Scholar]
  18. Staehelin L. A. Chloroplast membrane structure. Intramembranous particles of different sizes make contact in stacked membrane regions. Biochim Biophys Acta. 1975 Oct 10;408(1):1–11. doi: 10.1016/0005-2728(75)90153-x. [DOI] [PubMed] [Google Scholar]
  19. Staehelin L. A. Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J Cell Biol. 1976 Oct;71(1):136–158. doi: 10.1083/jcb.71.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takahashi M., Gross E. L. Use of immobilized light-harvesting chlorophyll a/b protein to study the stoichiometry of its self-association. Biochemistry. 1978 Mar 7;17(5):806–810. doi: 10.1021/bi00598a009. [DOI] [PubMed] [Google Scholar]
  21. Unwin P. N., Henderson R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol. 1975 May 25;94(3):425–440. doi: 10.1016/0022-2836(75)90212-0. [DOI] [PubMed] [Google Scholar]
  22. Unwin P. N., Zampighi G. Structure of the junction between communicating cells. Nature. 1980 Feb 7;283(5747):545–549. doi: 10.1038/283545a0. [DOI] [PubMed] [Google Scholar]
  23. Walzthöny D., Moor H., Gross H. Ice crystals specifically decorate hydrophilic sites on freeze-fractured models membranes. Ultramicroscopy. 1981;6(3):259–266. doi: 10.1016/s0304-3991(81)80161-1. [DOI] [PubMed] [Google Scholar]
  24. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES