Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Nov 1;97(5):1592–1600. doi: 10.1083/jcb.97.5.1592

Rings of membrane sterols surround the openings of vesicles and fenestrae, in capillary endothelium

PMCID: PMC2112669  PMID: 6415070

Abstract

We investigated the distribution of sterols in the cell membrane of microvascular endothelium (mouse pancreas, diaphragm, brain, heart, lung, kidney, thyroid, adrenal, and liver) with the polyene antibiotic filipin, which reportedly has binding specificity for free 3-beta- hydroxysterols. In some experiments, concomitantly, cell-surface anionic sites were detected with cationized ferritin. Vessels were perfused in situ with PBS, followed by light fixation and filipin administration for 10 to 60 min. Tissues were further processed for thin-section and freeze-fracture electron microscopy. Short exposure (10 min) to filipin-glutaraldehyde solution resulted in the initial appearance, on many areas, of rings of characteristic filipin-sterol complexes within the rim surrounding stomata of most plasmalemmal vesicles, transendothelial channels, and fenestrae. Such rings were absent from the rims of the large openings of the sinusoid endothelium (liver, adrenal), coated pits and phagocytic vacuoles. After longer exposure (30-60 min), filipin-sterol complexes labeled randomly the rest of plasma membrane (except for coated pits, and partially the interstrand areas of junctions), and also marked most plasmalemmal vesicles. These peristomal rings of sterols were displayed mostly on the P face, and, at their full development, consisted of 6-8 units around a vesicle stoma, and 10-12 units around a fenestra. At their level, the intramembranous particles and the cell surface anionic sites were virtually excluded. Peristomal rings of sterols were also detected on the plasma membrane of pericytes and smooth muscle cells of the microvascular wall, which otherwise were poorly labeled with filipin- sterol complexes as compared to endothelial plasmalemma. It is presumed that the peristomal rings of cholesterol may represent important contributors to the local transient stabilization of plasma membrane and to the phase separation between cell membrane and vesicle membrane at a certain stage of their fusion/fission process.

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews L. D., Cohen A. I. Freeze-fracture evidence for the presence of cholesterol in particle-free patches of basal disks and the plasma membrane of retinal rod outer segments of mice and frogs. J Cell Biol. 1979 Apr;81(1):215–228. doi: 10.1083/jcb.81.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bearer E. L., Friend D. S. Modifications of anionic-lipid domains preceding membrane fusion in guinea pig sperm. J Cell Biol. 1982 Mar;92(3):604–615. doi: 10.1083/jcb.92.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bittman R. Sterol-polyene antibiotic complexation: probe of membrane structure. Lipids. 1978 Oct;13(10):686–691. doi: 10.1007/BF02533746. [DOI] [PubMed] [Google Scholar]
  4. Blau L., Bittman R. Cholesterol distribution between the two halves of the lipid bilayer of human erythrocyte ghost membranes. J Biol Chem. 1978 Dec 10;253(23):8366–8368. [PubMed] [Google Scholar]
  5. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  6. Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
  7. Elias P. M., Friend D. S., Goerke J. Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin. J Histochem Cytochem. 1979 Sep;27(9):1247–1260. doi: 10.1177/27.9.479568. [DOI] [PubMed] [Google Scholar]
  8. Friend D. S. Freeze-fracture alterations in guinea pig sperm membranes preceding gamete fusion. Soc Gen Physiol Ser. 1980;34:153–165. [PubMed] [Google Scholar]
  9. Friend D. S. Plasma-membrane diversity in a highly polarized cell. J Cell Biol. 1982 May;93(2):243–249. doi: 10.1083/jcb.93.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hope M. J., Bruckdorfer K. R., Hart C. A., Lucy J. A. Membrane cholesterol and cell fusion of hen and guinea-pig erythrocytes. Biochem J. 1977 Aug 15;166(2):255–263. doi: 10.1042/bj1660255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horwitz A. F., Wight A., Ludwig P., Cornell R. Interrelated lipid alterations and their influence on the proliferation and fusion of cultured myogenic cells. J Cell Biol. 1978 May;77(2):334–357. doi: 10.1083/jcb.77.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karnovsky M. J. Intramembranous cytochemistry: a perspective. Lab Invest. 1982 Jun;46(6):637–639. [PubMed] [Google Scholar]
  13. Lentz B. R., Barenholz Y., Thompson T. E. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes. Biochemistry. 1976 Oct 5;15(20):4529–4537. doi: 10.1021/bi00665a030. [DOI] [PubMed] [Google Scholar]
  14. Montesano R. Inhomogeneous distribution of filipin-sterol complexes in smooth muscle cell plasma membrane. Nature. 1979 Jul 26;280(5720):328–329. doi: 10.1038/280328a0. [DOI] [PubMed] [Google Scholar]
  15. Montesano R., Perrelet A., Vassalli P., Orci L. Absence of filipin-sterol complexes from large coated pits on the surface of culture cells. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6391–6395. doi: 10.1073/pnas.76.12.6391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Montesano R., Vassalli P., Perrelet A., Orci L. Distribution of filipin-cholesterol complexes at sites of exocytosis - a freeze-fracture study of degranulating mast cells. Cell Biol Int Rep. 1980 Nov;4(11):975–984. doi: 10.1016/0309-1651(80)90170-8. [DOI] [PubMed] [Google Scholar]
  17. Norman A. W., Spielvogel A. M., Wong R. G. Polyene antibiotic - sterol interaction. Adv Lipid Res. 1976;14:127–170. [PubMed] [Google Scholar]
  18. Orci L., Brown D., Amherdt M., Perrelet A. Distribution of intramembrane particles and filipin-sterol complexes in plasma membranes of kidney. I. Corpuscle of Malpighi. Lab Invest. 1982 Jun;46(6):545–553. [PubMed] [Google Scholar]
  19. Orci L., Miller R. G., Montesano R., Perrelet A., Amherdt M., Vassalli P. Opposite polarity of filipin-induced deformations in the membrane of condensing vacuoles and zymogen granules. Science. 1980 Nov 28;210(4473):1019–1021. doi: 10.1126/science.7434010. [DOI] [PubMed] [Google Scholar]
  20. Orci L., Montesano R., Brown D. Heterogeneity of toad bladder granular cell luminal membranes. Distribution of filipin-sterol complexes in freeze-fracture. Biochim Biophys Acta. 1980 Oct 2;601(3):443–452. doi: 10.1016/0005-2736(80)90548-9. [DOI] [PubMed] [Google Scholar]
  21. Papahadjopoulos D., Poste G., Schaeffer B. E. Fusion of mammalian cells by unilamellar lipid vesicles: inflluence of lipid surface charge, fluidity and cholesterol. Biochim Biophys Acta. 1973 Sep 27;323(1):23–42. doi: 10.1016/0005-2736(73)90429-x. [DOI] [PubMed] [Google Scholar]
  22. Poste G., Allison A. C. Membrane fusion. Biochim Biophys Acta. 1973 Dec 28;300(4):421–465. doi: 10.1016/0304-4157(73)90015-4. [DOI] [PubMed] [Google Scholar]
  23. Robinson J. M., Karnovsky M. J. Evaluation of the polyene antibiotic filipin as a cytochemical probe for membrane cholesterol. J Histochem Cytochem. 1980 Feb;28(2):161–168. doi: 10.1177/28.2.6766487. [DOI] [PubMed] [Google Scholar]
  24. Rothman J. E., Lenard J. Membrane asymmetry. Science. 1977 Feb 25;195(4280):743–753. doi: 10.1126/science.402030. [DOI] [PubMed] [Google Scholar]
  25. Severs N. J. Comparison of the response of myocardial muscle and capillary endothelial nuclear membranes to the cholesterol probe filipin. J Submicrosc Cytol. 1982 Jul;14(3):441–452. [PubMed] [Google Scholar]
  26. Severs N. J. Plasma membrane cholesterol in myocardial muscle and capillary endothelial cells. Distribution of filipin-induced deformations in freeze-fracture. Eur J Cell Biol. 1981 Oct;25(2):289–299. [PubMed] [Google Scholar]
  27. Simionescu M., Simionescu N., Palade G. E. Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol. 1982 Aug;94(2):406–413. doi: 10.1083/jcb.94.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simionescu M., Simionescu N., Palade G. E. Preferential distribution of anionic sites on the basement membrane and the abluminal aspect of the endothelium in fenestrated capillaries. J Cell Biol. 1982 Nov;95(2 Pt 1):425–434. doi: 10.1083/jcb.95.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Simionescu M., Simionescu N., Silbert J. E., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol. 1981 Sep;90(3):614–621. doi: 10.1083/jcb.90.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Simionescu N., Simionescu M., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol. 1981 Sep;90(3):605–613. doi: 10.1083/jcb.90.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tillack T. W., Kinsky S. C. A freeze-etch study of the effects of filipin on liposomes and human erythrocyte membranes. Biochim Biophys Acta. 1973 Sep 27;323(1):43–54. doi: 10.1016/0005-2736(73)90430-6. [DOI] [PubMed] [Google Scholar]
  33. Van Venetie R., Verkleij A. J. Analysis of the hexagonal II phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study. Biochim Biophys Acta. 1981 Jul 20;645(2):262–269. doi: 10.1016/0005-2736(81)90197-8. [DOI] [PubMed] [Google Scholar]
  34. Verkleij A. J., de Kruijff B., Gerritsen W. F., Demel R. A., van Deenen L. L., Ververgaert P. H. Freeze-etch electron microscopy of erythrocytes, Acholeplasma laidlawii cells and liposomal membranes after the action of filipin and amphotericin B. Biochim Biophys Acta. 1973 Jan 26;291(2):577–581. doi: 10.1016/0005-2736(73)90509-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES