Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Nov 1;97(5):1467–1475. doi: 10.1083/jcb.97.5.1467

A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. I. Biochemical characterization, effects on microtubule polymerization in vitro, and microtubule polymerization and organization in vivo

PMCID: PMC2112671  PMID: 6415068

Abstract

The antigenic site recognized by a rat monoclonal antibody (clone YL 1/2) reacting with alpha-tubulin (Kilmartin, J.V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) has been determined and partially characterized. YL 1/2 reacts specifically with the tyrosylated form of brain alpha-tubulin from different mammalian species. YL 1/2 reacts with the synthetic peptide Gly-(Glu)3-Gly-(Glu)2- Tyr, corresponding to the carboxyterminal amino acid sequence of tyrosylated alpha-tubulin, but does not react with Gly-(Glu)3-Gly- (Glu)2, the constituent peptide of detyrosylated alpha-tubulin. Electron microscopy as well as direct and indirect immunofluorescence microscopy shows that YL 1/2 binds to the surface of microtubules polymerized in vitro and in vivo. Further in vitro studies show that the antibody has no effect on the rate and extent of microtubule polymerization, the stability of microtubules, and the incorporation of the microtubule-associated proteins (MAP2) and tau into microtubules. In vivo studies using Swiss 3T3 fibroblasts injected with YL 1/2 show that; when injected at low concentration (2 mg IgG/ml in the injection solution), the antibody binds to microtubules without changing their distribution in the cytoplasm. Injection of larger concentration of YL 1/2 (6 mg IgG/ml) induces the formation of microtubule bundles, and still higher concentrations cause the aggregation of microtubule bundles around the nucleus (greater than 12 mg IgG/ml).

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argarana C. E., Barra H. S., Caputto R. Tubulinyl-tyrosine carboxypeptidase from chicken brain: properties and partial purification. J Neurochem. 1980 Jan;34(1):114–118. doi: 10.1111/j.1471-4159.1980.tb04628.x. [DOI] [PubMed] [Google Scholar]
  2. Barra H. S., Arce C. A., Rodríguez J. A., Caputto R. Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1384–1390. doi: 10.1016/0006-291x(74)90351-9. [DOI] [PubMed] [Google Scholar]
  3. Eipper B. A. Rat brain tubulin and protein kinase activity. J Biol Chem. 1974 Mar 10;249(5):1398–1406. [PubMed] [Google Scholar]
  4. Flavin M., Kobayashi T., Martensen T. M. Tubulin-tyrosine ligase from brain. Methods Cell Biol. 1982;24:257–263. doi: 10.1016/s0091-679x(08)60659-7. [DOI] [PubMed] [Google Scholar]
  5. Granger B. L., Lazarides E. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell. 1979 Dec;18(4):1053–1063. doi: 10.1016/0092-8674(79)90218-6. [DOI] [PubMed] [Google Scholar]
  6. Hallak M. E., Rodriguez J. A., Barra H. S., Caputto R. Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin. FEBS Lett. 1977 Feb 1;73(2):147–150. doi: 10.1016/0014-5793(77)80968-x. [DOI] [PubMed] [Google Scholar]
  7. Jameson L., Frey T., Zeeberg B., Dalldorf F., Caplow M. Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry. 1980 May 27;19(11):2472–2479. doi: 10.1021/bi00552a027. [DOI] [PubMed] [Google Scholar]
  8. Keates R. A., Hall R. H. Tubulin requires an accessory protein for self assembly in microtubules. Nature. 1975 Oct 2;257(5525):418–421. doi: 10.1038/257418a0. [DOI] [PubMed] [Google Scholar]
  9. Kilmartin J. V., Wright B., Milstein C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol. 1982 Jun;93(3):576–582. doi: 10.1083/jcb.93.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kumar N., Flavin M. Preferential action of a brain detyrosinolating carboxypeptidase on polymerized tubulin. J Biol Chem. 1981 Jul 25;256(14):7678–7686. [PubMed] [Google Scholar]
  11. Lerner R. A., Green N., Alexander H., Liu F. T., Sutcliffe J. G., Shinnick T. M. Chemically synthesized peptides predicted from the nucleotide sequence of the hepatitis B virus genome elicit antibodies reactive with the native envelope protein of Dane particles. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3403–3407. doi: 10.1073/pnas.78.6.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marcum J. M., Dedman J. R., Brinkley B. R., Means A. R. Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3771–3775. doi: 10.1073/pnas.75.8.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martensen T. M. Preparation of brain tyrosinotubulin carboxypeptidase. Methods Cell Biol. 1982;24:265–269. doi: 10.1016/s0091-679x(08)60660-3. [DOI] [PubMed] [Google Scholar]
  14. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nath J., Flavin M. Tubulin tyrosylation in vivo and changes accompanying differentiation of cultured neuroblastoma-glioma hybrid cells. J Biol Chem. 1979 Nov 25;254(22):11505–11510. [PubMed] [Google Scholar]
  16. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pastan I., Willingham M., Anderson W., Gallo M. Localization of serum-derived alpha 2 macroglobulin in cultured cells and decrease after Moloney sarcoma virus transformation. Cell. 1977 Nov;12(3):609–617. doi: 10.1016/0092-8674(77)90261-6. [DOI] [PubMed] [Google Scholar]
  18. Ponstingl H., Little M., Krauhs E., Kempf T. Carboxy-terminal amino acid sequence of alpha-tubulin from porcine brain. Nature. 1979 Nov 22;282(5737):423–425. doi: 10.1038/282423a0. [DOI] [PubMed] [Google Scholar]
  19. Raybin D., Flavin M. Enzyme which specifically adds tyrosine to the alpha chain of tubulin. Biochemistry. 1977 May 17;16(10):2189–2194. doi: 10.1021/bi00629a023. [DOI] [PubMed] [Google Scholar]
  20. Raybin D., Flavin M. Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J Cell Biol. 1977 May;73(2):492–504. doi: 10.1083/jcb.73.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sandoval I. V., Cuatrecasas P. Protein kinase associated with tubulin: affinity chromatography and properties. Biochemistry. 1976 Aug 10;15(16):3424–3432. doi: 10.1021/bi00661a005. [DOI] [PubMed] [Google Scholar]
  22. Sandoval I. V., Vandekerckhove J. S. A comparative study of the in vitro polymerization of tubulin in the presence of the microtubule-associated proteins MAP2 and tau. J Biol Chem. 1981 Aug 25;256(16):8795–8800. [PubMed] [Google Scholar]
  23. Sandoval I. V., Weber K. Different tubulin polymers are produced by microtubule-associated proteins MAP2 and tau in the presence of guanosine 5'-(alpha, beta-methylene)triphosphate. J Biol Chem. 1980 Oct 10;255(19):8952–8954. [PubMed] [Google Scholar]
  24. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thompson W. C., Deanin G. G., Gordon M. W. Intact microtubules are required for rapid turnover of carboxyl-terminal tyrosine of alpha-tubulin in cell cultures. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1318–1322. doi: 10.1073/pnas.76.3.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thompson W. C. The cyclic tyrosination/detyrosination of alpha tubulin. Methods Cell Biol. 1982;24:235–255. doi: 10.1016/s0091-679x(08)60658-5. [DOI] [PubMed] [Google Scholar]
  28. Valenzuela P., Quiroga M., Zaldivar J., Rutter W. J., Kirschner M. W., Cleveland D. W. Nucleotide and corresponding amino acid sequences encoded by alpha and beta tubulin mRNAs. Nature. 1981 Feb 19;289(5799):650–655. doi: 10.1038/289650a0. [DOI] [PubMed] [Google Scholar]
  29. Weber K., Rathke P. C., Osborn M. Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1820–1824. doi: 10.1073/pnas.75.4.1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wehland J., Osborn M., Weber K. Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5613–5617. doi: 10.1073/pnas.74.12.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wehland J., Willingham M. C. A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. II. Effects on cell movement, organization of microtubules, and intermediate filaments, and arrangement of Golgi elements. J Cell Biol. 1983 Nov;97(5 Pt 1):1476–1490. doi: 10.1083/jcb.97.5.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weisenberg R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science. 1972 Sep 22;177(4054):1104–1105. doi: 10.1126/science.177.4054.1104. [DOI] [PubMed] [Google Scholar]
  34. Willingham M. C., Pastan I. Cyclic amp and cell morphology in cultured fibroblasts. Effects on cell shape, microfilament and microtubule distribution, and orientation to substratum. J Cell Biol. 1975 Oct;67(1):146–159. doi: 10.1083/jcb.67.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Willingham M. C., Yamada S. S., Pastan I. Ultrastructural localization of tubulin in cultured fibroblasts. J Histochem Cytochem. 1980 May;28(5):453–461. doi: 10.1177/28.5.6991592. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES