Abstract
We investigated the effect of trifluoperazine (TFP), a calmodulin antagonist, on the fusion of chick skeletal myoblasts in culture. TFP was found to inhibit myoblast fusion. This effect occurs at concentrations that have been reported to inhibit Ca2+-calmodulin in vitro, and is reversed upon removal of TFP. In addition, other calmodulin antagonists, including chlorpromazine, N-(6-aminohexyl)-5- chloro-1-naphthalene-sulfonamide (W7), and N-(6-aminohexyl)-1- naphthalene-sulfonamide (W5), inhibit fusion at doses that correspond closely to the antagonistic effects of these drugs on calmodulin. The expression of surface acetylcholine receptor, a characteristic aspect of muscle differentiation, is not impaired in TFP-arrested myoblasts. Myoblasts inhibited from fusion by 10 microM TFP display impaired alignment. In the presence of the Ca2+ ionophore A23187, the fusion block by 10 microM TFP is partially reversed and myoblast alignment is restored. The presence and distribution of calmodulin in both prefusional myoblasts and fused muscle cells was established by immunofluorescence. We observed an apparent redistribution of calmodulin staining that is temporally correlated with the onset of myoblast fusion. Our findings suggest a possible role for calmodulin in the regulation of myoblast fusion.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bandman E., Walker C. R., Strohman R. C. Diazepam inhibits myoblast fusion and expression of muscle specific protein synthesis. Science. 1978 May 5;200(4341):559–561. doi: 10.1126/science.565534. [DOI] [PubMed] [Google Scholar]
- Brostrom M. A., Brostrom C. O., Breckenridge B. M., Wolff D. J. Calcium-dependent regulation of brain adenylate cyclase. Adv Cyclic Nucleotide Res. 1978;9:85–99. [PubMed] [Google Scholar]
- Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
- Chiesi M., Carafoli E. The regulation of Ca2+ transport by fast skeletal muscle sarcoplasmic reticulum. Role of calmodulin and of the 53,000-dalton glycoprotein. J Biol Chem. 1982 Jan 25;257(2):984–991. [PubMed] [Google Scholar]
- Connor C. G., Brady R. C., Brownstein B. L. Trifluoperazine inhibits spreading and migration of cells in culture. J Cell Physiol. 1981 Sep;108(3):299–307. doi: 10.1002/jcp.1041080303. [DOI] [PubMed] [Google Scholar]
- Dabrowska R., Sherry J. M., Aromatorio D. K., Hartshorne D. J. Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochemistry. 1978 Jan 24;17(2):253–258. doi: 10.1021/bi00595a010. [DOI] [PubMed] [Google Scholar]
- David J. D., Higginbotham C. A. Fusion of chick embryo skeletal myoblasts: interactions of prostaglandin E1, adenosine 3':5' monophosphate, and calcium influx. Dev Biol. 1981 Mar;82(2):308–316. doi: 10.1016/0012-1606(81)90454-1. [DOI] [PubMed] [Google Scholar]
- David J. D., See W. M., Higginbotham C. A. Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union. Dev Biol. 1981 Mar;82(2):297–307. doi: 10.1016/0012-1606(81)90453-x. [DOI] [PubMed] [Google Scholar]
- Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
- Fulton A. B., Prives J., Farmer S. R., Penman S. Developmental reorganization of the skeletal framework and its surface lamina in fusing muscle cells. J Cell Biol. 1981 Oct;91(1):103–112. doi: 10.1083/jcb.91.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garofalo R. S., Gilligan D. M., Satir B. H. Calmodulin antagonists inhibit secretion in Paramecium. J Cell Biol. 1983 Apr;96(4):1072–1081. doi: 10.1083/jcb.96.4.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman B. A., Fernandez S. M. Changes in membrane dynamics associated with myogenic cell fusion. J Cell Physiol. 1978 Mar;94(3):253–263. doi: 10.1002/jcp.1040940303. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Sasaki Y., Tanaka T., Endo T., Ohno S., Fujii Y., Nagata T. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4354–4357. doi: 10.1073/pnas.78.7.4354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hidaka H., Yamaki T., Naka M., Tanaka T., Hayashi H., Kobayashi R. Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol Pharmacol. 1980 Jan;17(1):66–72. [PubMed] [Google Scholar]
- Hinds T. R., Raess B. U., Vincenzi F. F. Plasma membrane Ca2+ transport: antagonism by several potential inhibitors. J Membr Biol. 1981 Jan 30;58(1):57–65. doi: 10.1007/BF01871034. [DOI] [PubMed] [Google Scholar]
- Horwitz A. F., Wight A., Ludwig P., Cornell R. Interrelated lipid alterations and their influence on the proliferation and fusion of cultured myogenic cells. J Cell Biol. 1978 May;77(2):334–357. doi: 10.1083/jcb.77.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz S. B., Chia G. H., Harracksingh C., Orlow S., Pifko-Hirst S., Schneck J., Sorbara L., Speaker M., Wilk E. W., Rosen O. M. Trifluoperazine inhibits phagocytosis in a macrophagelike cultured cell line. J Cell Biol. 1981 Dec;91(3 Pt 1):798–802. doi: 10.1083/jcb.91.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalderon N., Epstein M. L., Gilula N. B. Cell-to-cell communication and myogenesis. J Cell Biol. 1977 Dec;75(3):788–806. doi: 10.1083/jcb.75.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalderon N., Gilula N. B. Membrane events involved in myoblast fusion. J Cell Biol. 1979 May;81(2):411–425. doi: 10.1083/jcb.81.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klee C. B., Crouch T. H., Richman P. G. Calmodulin. Annu Rev Biochem. 1980;49:489–515. doi: 10.1146/annurev.bi.49.070180.002421. [DOI] [PubMed] [Google Scholar]
- Knudsen K. A., Horwitz A. F. Differential inhibition of myoblast fusion. Dev Biol. 1978 Oct;66(2):294–307. doi: 10.1016/0012-1606(78)90239-7. [DOI] [PubMed] [Google Scholar]
- Knudsen K. A., Horwitz A. F. Tandem events in myoblast fusion. Dev Biol. 1977 Jul 15;58(2):328–338. doi: 10.1016/0012-1606(77)90095-1. [DOI] [PubMed] [Google Scholar]
- Kobayashi R., Tawata M., Hidaka H. Ca2+ regulated modulator protein interacting agents: inhibition of Ca2+-Mg2+-ATPase of human erythrocyte ghost. Biochem Biophys Res Commun. 1979 Jun 13;88(3):1037–1045. doi: 10.1016/0006-291x(79)91513-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levin R. M., Weiss B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol. 1977 Jul;13(4):690–697. [PubMed] [Google Scholar]
- Levin R. M., Weiss B. Inhibition by trifluoperazine of calmodulin-induced activation of ATPase activity of rat erythrocyte. Neuropharmacology. 1980 Feb;19(2):169–174. doi: 10.1016/0028-3908(80)90134-3. [DOI] [PubMed] [Google Scholar]
- Levin R. M., Weiss B. Specificity of the binding of trifluoperazine to the calcium-dependent activator of phosphodiesterase and to a series of other calcium-binding proteins. Biochim Biophys Acta. 1978 May 3;540(2):197–204. doi: 10.1016/0304-4165(78)90132-0. [DOI] [PubMed] [Google Scholar]
- Lichtman A. H., Segel G. B., Lichtman M. A. Effects of trifluoperazine and mitogenic lectins on calcium ATPase activity and calcium transport by human lymphocyte plasma membrane vesicles. J Cell Physiol. 1982 May;111(2):213–217. doi: 10.1002/jcp.1041110214. [DOI] [PubMed] [Google Scholar]
- Marcum J. M., Dedman J. R., Brinkley B. R., Means A. R. Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3771–3775. doi: 10.1073/pnas.75.8.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Means A. R., Tash J. S., Chafouleas J. G. Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev. 1982 Jan;62(1):1–39. doi: 10.1152/physrev.1982.62.1.1. [DOI] [PubMed] [Google Scholar]
- Nameroff M., Munar E. Inhibition of cellular differentiation by phospholipase C. II. Separation of fusion and recognition among myogenic cells. Dev Biol. 1976 Mar;49(1):288–293. doi: 10.1016/0012-1606(76)90275-x. [DOI] [PubMed] [Google Scholar]
- Nelson G. A., Andrews M. L., Karnovsky M. J. Participation of calmodulin in immunoglobulin capping. J Cell Biol. 1982 Dec;95(3):771–780. doi: 10.1083/jcb.95.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Neill M. C., Stockdale F. E. A kinetic analysis of myogenesis in vitro. J Cell Biol. 1972 Jan;52(1):52–65. doi: 10.1083/jcb.52.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olden K., Law J., Hunter V. A., Romain R., Parent J. B. Inhibition of fusion of embryonic muscle cells in culture by tunicamycin is prevented by leupeptin. J Cell Biol. 1981 Jan;88(1):199–204. doi: 10.1083/jcb.88.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborn M., Weber K. Damage of cellular functions by trifluoperazine, a calmodulin-specific drug. Exp Cell Res. 1980 Dec;130(2):484–488. doi: 10.1016/0014-4827(80)90033-6. [DOI] [PubMed] [Google Scholar]
- Owen N. E., Villereal M. L. Evidence for a role of calmodulin in serum stimulation of Na+ influx in human fibroblasts. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3537–3541. doi: 10.1073/pnas.79.11.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papahadjopoulos D., Jacobson K., Poste G., Shepherd G. Effects of local anesthetics on membrane properties. I. Changes in the fluidity of phospholipid bilayers. Biochim Biophys Acta. 1975 Jul 18;394(4):504–519. doi: 10.1016/0005-2736(75)90137-6. [DOI] [PubMed] [Google Scholar]
- Paterson B., Prives J. Appearance of acetylcholine receptor in differentiating cultures of embryonic chick breast muscle. J Cell Biol. 1973 Oct;59(1):241–245. doi: 10.1083/jcb.59.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paterson B., Strohman R. C. Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle. Dev Biol. 1972 Oct;29(2):113–138. doi: 10.1016/0012-1606(72)90050-4. [DOI] [PubMed] [Google Scholar]
- Prives J., Shinitzky M. Increased membrane fluidity precedes fusion of muscle cells. Nature. 1977 Aug 25;268(5622):761–763. doi: 10.1038/268761a0. [DOI] [PubMed] [Google Scholar]
- Rabinovitch M., DeStefano M. J. Cell shape changes induced by cationic anesthetics. J Exp Med. 1976 Feb 1;143(2):290–304. doi: 10.1084/jem.143.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabinovitch M., DeStefano M. Cell to substrate adhesion and spreading: inhibition by cationic anesthetics. J Cell Physiol. 1975 Apr;85(2 Pt 1):189–193. doi: 10.1002/jcp.1040850205. [DOI] [PubMed] [Google Scholar]
- Raess B. U., Vincenzi F. F. Calmodulin activation of red blood cell (Ca2+ + Mg2+)-ATPase and its antagonism by phenothiazines. Mol Pharmacol. 1980 Sep;18(2):253–258. [PubMed] [Google Scholar]
- Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
- Shainberg A., Yagil G., Yaffe D. Control of myogenesis in vitro by Ca 2 + concentration in nutritional medium. Exp Cell Res. 1969 Nov;58(1):163–167. doi: 10.1016/0014-4827(69)90127-x. [DOI] [PubMed] [Google Scholar]
- Weiss B., Levin R. M. Mechanism for selectively inhibiting the activation of cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic agents. Adv Cyclic Nucleotide Res. 1978;9:285–303. [PubMed] [Google Scholar]