Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Nov 1;97(5):1421–1428. doi: 10.1083/jcb.97.5.1421

Antibodies to the ciliary membrane of Paramecium tetraurelia alter membrane excitability

PMCID: PMC2112700  PMID: 6313697

Abstract

Immobilization of Paramecium followed the binding of antibodies to the major proteins of the ciliary membrane (the immobilization antigens, i- antigens, approximately 250,000 mol wt). Immunoelectron microscopy showed this binding to be serotype-specific and to occur over the entire cell surface. Antibody binding also reduced the current through the Ca-channel of the excitable ciliary membrane as monitored using a voltage-clamp. The residual Ca-current appeared normal in its voltage sensitivity and kinetics. As a secondary consequence of antibody binding, the Ca-induced K-current was also reduced. The resting membrane characteristics and other activatable currents, however, were not significantly altered by the antibody treatment. Since monovalent fragments of the antibodies also reduced the current but did not immobilize the cell, the electrophysiological effects were not the secondary consequences of immobilization. Antibodies against the second most abundant family of proteins (42,000-45,000 mol wt) had similar electrophysiological effects as revealed by experiments in which the Paramecia and the serum were heterologous with respect to the i-antigen but homologous with respect to the 42,000-45,000-mol-wt proteins. Protease treatment, shown to remove the surface antigen, also caused a reduction of the Ca-inward current. The loss of the inward Ca-current does not seem to be due to a drop in the driving force for Ca++ entry since increasing the external Ca++ or reducing the internal Ca++ (through EGTA injection) did not restore the current. Here we discuss the possibilities that (a) the major proteins define the functional environment of the Ca-channel and that (b) the Ca-channel is more susceptible to certain general changes in the membrane.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEALE G. H., KACSER H. Studies on the antigens of Paramecium aurelia with the aid of fluorescent antibodies. J Gen Microbiol. 1957 Aug;17(1):68–74. doi: 10.1099/00221287-17-1-68. [DOI] [PubMed] [Google Scholar]
  2. Bloodgood R. A., May G. S. Functional modification of the Chlamydomonas flagellar surface. J Cell Biol. 1982 Apr;93(1):88–96. doi: 10.1083/jcb.93.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brehm P., Eckert R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science. 1978 Dec 15;202(4373):1203–1206. doi: 10.1126/science.103199. [DOI] [PubMed] [Google Scholar]
  4. Cohen L. B., Hille B., Keynes R. D., Landowne D., Rojas E. Analysis of the potential-dependent changes in optical retardation in the squid giant axon. J Physiol. 1971 Oct;218(1):205–237. doi: 10.1113/jphysiol.1971.sp009611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunlap K. Localization of calcium channels in Paramecium caudatum. J Physiol. 1977 Sep;271(1):119–133. doi: 10.1113/jphysiol.1977.sp011993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eckert R., Brehm P. Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng. 1979;8:353–383. doi: 10.1146/annurev.bb.08.060179.002033. [DOI] [PubMed] [Google Scholar]
  7. Eisenbach L., Ramanathan R., Nelson D. L. Biochemical studies of the excitable membrane of paramecium tetraurelia. IX. Antibodies against ciliary membrane proteins. J Cell Biol. 1983 Nov;97(5 Pt 1):1412–1420. doi: 10.1083/jcb.97.5.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRASCA J. M., PARKS V. R. A ROUTINE TECHNIQUE FOR DOUBLE-STAINING ULTRATHIN SECTIONS USING URANYL AND LEAD SALTS. J Cell Biol. 1965 Apr;25:157–161. doi: 10.1083/jcb.25.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forte M., Satow Y., Nelson D., Kung C. Mutational alteration of membrane phospholipid composition and voltage-sensitive ion channel function in paramecium. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7195–7199. doi: 10.1073/pnas.78.11.7195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hagiwara S. Ca spike. Adv Biophys. 1973;4:71–102. [PubMed] [Google Scholar]
  11. LEVY H. B., SOBER H. A. A simple chromatographic method for preparation of gamma globulin. Proc Soc Exp Biol Med. 1960 Jan;103:250–252. doi: 10.3181/00379727-103-25476. [DOI] [PubMed] [Google Scholar]
  12. Naito Y., Kaneko H. Reactivated triton-extracted models o paramecium: modification of ciliary movement by calcium ions. Science. 1972 May 5;176(4034):523–524. doi: 10.1126/science.176.4034.523. [DOI] [PubMed] [Google Scholar]
  13. Oertel D., Schein S. J., Kung C. A potassium conductance activated by hyperpolarization in paramecium. J Membr Biol. 1978 Oct 19;43(2-3):169–185. doi: 10.1007/BF01933477. [DOI] [PubMed] [Google Scholar]
  14. Oertel D., Schein S. J., Kung C. Separation of membrane currents using a Paramecium mutant. Nature. 1977 Jul 14;268(5616):120–124. doi: 10.1038/268120a0. [DOI] [PubMed] [Google Scholar]
  15. Ogura A., Takahashi K. Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature. 1976 Nov 11;264(5582):170–172. doi: 10.1038/264170a0. [DOI] [PubMed] [Google Scholar]
  16. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ramanathan R., Adoutte A., Dute R. R. Biochemical studies of the excitable membrane of Paramecium tetraurelia. V. Effects of proteases on the ciliary membrane. Biochim Biophys Acta. 1981 Mar 6;641(2):349–365. doi: 10.1016/0005-2736(81)90491-0. [DOI] [PubMed] [Google Scholar]
  18. Reisner A. H., Rowe J., Sleigh R. W. Concerning the tertiary structure of the soluble surface proteins of Paramecium. Biochemistry. 1969 Nov;8(11):4637–4644. doi: 10.1021/bi00839a061. [DOI] [PubMed] [Google Scholar]
  19. Saimi Y., Kung C. A Ca-induced Na-current in Paramecium. J Exp Biol. 1980 Oct;88:305–325. doi: 10.1242/jeb.88.1.305. [DOI] [PubMed] [Google Scholar]
  20. Saimi Y., Kung C. Are ions involved in the gating of calcium channels? Science. 1982 Oct 8;218(4568):153–156. doi: 10.1126/science.6289432. [DOI] [PubMed] [Google Scholar]
  21. Satow Y., Kung C. Ca-induced K+-outward current in Paramecium tetraurelia. J Exp Biol. 1980 Oct;88:293–303. doi: 10.1242/jeb.88.1.293. [DOI] [PubMed] [Google Scholar]
  22. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  23. Steers E., Jr Electrophoretic Analysis of Immobilization Antigens of Paramecium aurelia. Science. 1961 Jun 23;133(3469):2010–2011. doi: 10.1126/science.133.3469.2010. [DOI] [PubMed] [Google Scholar]
  24. Tasaki I., Watanabe A., Sandlin R., Carnay L. Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci U S A. 1968 Nov;61(3):883–888. doi: 10.1073/pnas.61.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES