Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Dec 1;97(6):1745–1752. doi: 10.1083/jcb.97.6.1745

Interconversion of structural and contractile actin gels by insertion of myosin during assembly

PMCID: PMC2112710  PMID: 6227627

Abstract

Extracts of the soluble cytoplasmic proteins of the sea urchin egg form gels of different composition and properties depending on the temperature used to induce actin polymerization. At temperatures that inactivate myosin, a gel composed of actin, fascin, and a 220,000-mol- wt protein is formed. Fascin binds actin into highly organized units with a characteristic banding pattern, and these actin-fascin units are the structural core of the sea urchin microvilli formed after fertilization and of the urchin coelomocyte filopods. Under milder conditions a more complex myosin-containing gel is formed, which contracts to a small fraction of its original volume within an hour after formation. What has been called "structural" gel can be assembled by combining actin, fascin, and the 220,000-mol-wt protein in 50-100 mM KCl; the aim of the experiments reported here was to determine whether myosin could be included during assembly, thereby interconverting structural and contractile gel. This approach is limited by the aggregation of sea urchin myosin at the low salt concentrations utilized in gel assembly. A method has been devised for the sequential combination of these components under controlled KCl and ATP concentrations that allows the formation of a gel containing dispersed myosin at a final concentration of 60-100 mM KCl. These gels are stable at low (approximately 10 micron) ATP concentrations, but contract to a small volume in the presence of higher (approximately 100 micron) ATP. Contraction can be controlled by forming a stable gel at low ATP and then overlaying it with a solution containing sufficient ATP to induce contraction. This system may provide a useful model for the study of the interrelations between cytoplasmic structure and motility.

Full Text

The Full Text of this article is available as a PDF (992.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Bryan J., Kane R. E. Actin gelation in sea urchin egg extracts. Methods Cell Biol. 1982;25(Pt B):175–199. doi: 10.1016/s0091-679x(08)61425-9. [DOI] [PubMed] [Google Scholar]
  3. Bryan J., Kane R. E. Separation and interaction of the major components of sea urchin actin gel. J Mol Biol. 1978 Oct 25;125(2):207–224. doi: 10.1016/0022-2836(78)90345-5. [DOI] [PubMed] [Google Scholar]
  4. Burgess D. R., Schroeder T. E. Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. J Cell Biol. 1977 Sep;74(3):1032–1037. doi: 10.1083/jcb.74.3.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeRosier D., Mandelkow E., Silliman A. Structure of actin-containing filaments from two types of non-muscle cells. J Mol Biol. 1977 Jul 15;113(4):679–695. doi: 10.1016/0022-2836(77)90230-3. [DOI] [PubMed] [Google Scholar]
  7. Edds K. T. Dynamic aspects of filopodial formation by reorganization of microfilaments. J Cell Biol. 1977 May;73(2):479–491. doi: 10.1083/jcb.73.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  10. Hatano S., Oosawa F. Isolation and characterization of plasmodium actin. Biochim Biophys Acta. 1966 Oct 31;127(2):488–498. doi: 10.1016/0304-4165(66)90402-8. [DOI] [PubMed] [Google Scholar]
  11. Hellewell S. B., Taylor D. L. The contractile basis of ameboid movement. VI. The solation-contraction coupling hypothesis. J Cell Biol. 1979 Dec;83(3):633–648. doi: 10.1083/jcb.83.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kane R. E. Actin polymerization and interaction with other proteins in temperature-induced gelation of sea urchin egg extracts. J Cell Biol. 1976 Dec;71(3):704–714. doi: 10.1083/jcb.71.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kane R. E. Induction of either contractile or structural actin-based gels in sea urchin egg cytoplasmic extract. J Cell Biol. 1980 Sep;86(3):803–809. doi: 10.1083/jcb.86.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kane R. E. Preparation and purification of polymerized actin from sea urchin egg extracts. J Cell Biol. 1975 Aug;66(2):305–315. doi: 10.1083/jcb.66.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kerrick W. G., Bolles L. L. Evidence that myosin light chain phosphorylation regulates contraction in the body wall muscles of the sea cucumber. J Cell Physiol. 1982 Sep;112(3):307–315. doi: 10.1002/jcp.1041120302. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Mabuchi I. Myosin from starfish egg: properties and interaction with actin. J Mol Biol. 1976 Feb 5;100(4):569–582. doi: 10.1016/s0022-2836(76)80046-0. [DOI] [PubMed] [Google Scholar]
  18. Mabuchi I., Okuno M. The effect of myosin antibody on the division of starfish blastomeres. J Cell Biol. 1977 Jul;74(1):251–263. doi: 10.1083/jcb.74.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Otto J. J., Kane R. E., Bryan J. Formation of filopodia in coelomocytes: localization of fascin, a 58,000 dalton actin cross-linking protein. Cell. 1979 Jun;17(2):285–293. doi: 10.1016/0092-8674(79)90154-5. [DOI] [PubMed] [Google Scholar]
  20. Otto J. J., Kane R. E., Bryan J. Redistribution of actin and fascin in sea urchin eggs after fertilization. Cell Motil. 1980;1(1):31–40. doi: 10.1002/cm.970010104. [DOI] [PubMed] [Google Scholar]
  21. Schliwa M. Proteins associated with cytoplasmic actin. Cell. 1981 Sep;25(3):587–590. doi: 10.1016/0092-8674(81)90166-5. [DOI] [PubMed] [Google Scholar]
  22. Sellers J. R., Pato M. D., Adelstein R. S. Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J Biol Chem. 1981 Dec 25;256(24):13137–13142. [PubMed] [Google Scholar]
  23. Spudich J. A., Amos L. A. Structure of actin filament bundles from microvilli of sea urchin eggs. J Mol Biol. 1979 Apr 5;129(2):319–331. doi: 10.1016/0022-2836(79)90285-7. [DOI] [PubMed] [Google Scholar]
  24. Stendahl O. I., Stossel T. P. Actin-binding protein amplifies actomyosin contraction, and gelsolin confers calcium control on the direction of contraction. Biochem Biophys Res Commun. 1980 Jan 29;92(2):675–681. doi: 10.1016/0006-291x(80)90386-1. [DOI] [PubMed] [Google Scholar]
  25. Trinick J., Offer G. Cross-linking of actin filaments by heavy meromyosin. J Mol Biol. 1979 Oct 9;133(4):549–556. doi: 10.1016/0022-2836(79)90407-8. [DOI] [PubMed] [Google Scholar]
  26. Yin H. L., Stossel T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979 Oct 18;281(5732):583–586. doi: 10.1038/281583a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES