Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Dec 1;97(6):1724–1736. doi: 10.1083/jcb.97.6.1724

Immunological characterization of the major chick cartilage proteoglycan and its intracellular localization in cultured chondroblasts: a comparison with Type II procollagen

PMCID: PMC2112721  PMID: 6358233

Abstract

Polyclonal antibodies were raised in a rabbit against the major proteoglycan of chick sternal cartilage. A total of six antisera was obtained, three after the first booster injection (A1, A2, and A3) and three after the second booster injection (A4, A5, and A6). The A1 antiserum, which was characterized in most detail, immunoprecipitated native as well as chondroitinase ABC-digested or chondroitinase ABC/keratanase-digested cartilage proteoglycan synthesized by cultured chick chondroblasts, but failed to immunoprecipitate the major proteoglycan synthesized by chick skin fibroblasts. This antiserum was also able to immunoprecipitate the cartilage proteoglycan core protein newly synthesized by cultured chondroblasts, but no other major cell protein. However, the late bleed antisera obtained from the same rabbit after a second booster injection reacted with a new chondroblast- specific polypeptide(s) of approximately 60,000 mol wt in addition to the cartilage proteoglycan. By immunofluorescence procedures, the A1 antiserum stained the extracellular proteoglycan matrix of cultured chondroblasts but not that of skin fibroblasts. Following enzymatic removal of the extracellular matrix and cell membrane permeabilization, this antiserum stained primarily a large, juxtanuclear structure. Additional radioautographic evidence suggests that this structure represents the Golgi complex. Similar immunofluorescent staining with antibodies to the cartilage-characteristic Type II collagen revealed that type II procollagen was localized in numerous cytoplasmic, vacuole- like structures which were scattered throughout most of the chondroblast cytoplasm but were notably scanty in the Golgi complex area. In conclusion, our data suggest the transit of the major cartilage proteoglycan through the Golgi complex of cultured chondroblasts and possible differences in the intracellular distribution of newly synthesized cartilage proteoglycan and Type II procollagen.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. L., Boettiger D., Focht R. J., Holtzer H., Pacifici M. Regulation of the synthesis of extracellular matrix components in chondroblasts transformed by a temperature-sensitive mutant of Rous sarcoma virus. Cell. 1982 Sep;30(2):373–384. doi: 10.1016/0092-8674(82)90235-5. [DOI] [PubMed] [Google Scholar]
  2. Bennett G. S., Tapscott S. J., Kleinbart F. A., Antin P. B., Holtzer H. Different proteins associated with 10-nanometer filaments in cultured chick neurons and nonneuronal cells. Science. 1981 May 1;212(4494):567–569. doi: 10.1126/science.6163217. [DOI] [PubMed] [Google Scholar]
  3. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bornstein P., Sage H. Structurally distinct collagen types. Annu Rev Biochem. 1980;49:957–1003. doi: 10.1146/annurev.bi.49.070180.004521. [DOI] [PubMed] [Google Scholar]
  5. Carlstedt I., Cöster L., Malmström A. Isolation and characterization of dermatan sulphate and heparan sulphate proteoglycans from fibroblast culture. Biochem J. 1981 Jul 1;197(1):217–225. doi: 10.1042/bj1970217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chacko S., Abbott J., Holtzer S., Holtzer H. The loss of phenotypic traits by differentiated cells. VI. Behavior of the progeny of a single chondrocyte. J Exp Med. 1969 Aug 1;130(2):417–442. doi: 10.1084/jem.130.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curran S., Prockop D. J. Isolation and partial characterization of the amino-terminal propeptide of type II procollagen from chick embryos. Biochemistry. 1982 Mar 30;21(7):1482–1487. doi: 10.1021/bi00536a003. [DOI] [PubMed] [Google Scholar]
  8. De Luca S., Caplan A. I., Hascall V. C. Biosynthesis of proteoglycans by chick limb bud chondrocytes. J Biol Chem. 1978 Jul 10;253(13):4713–4720. [PubMed] [Google Scholar]
  9. De Luca S., Heinegård D., Hascall V. C., Kimura J. H., Caplan A. I. Chemical and physical changes in proteoglycans during development of chick limb bud chondrocytes grown in vitro. J Biol Chem. 1977 Oct 10;252(19):6600–6608. [PubMed] [Google Scholar]
  10. De Luca S., Lohmander L. S., Nilsson B., Hascall V. C., Caplan A. I. Proteoglycans from chick limb bud chondrocyte cultures. Keratan sulfate and oligosaccharides which contain mannose and sialic acid. J Biol Chem. 1980 Jul 10;255(13):6077–6083. [PubMed] [Google Scholar]
  11. Dessau W., Sasse J., Timpl R., Jilek F., von der Mark K. Synthesis and extracellular deposition of fibronectin in chondrocyte cultures. Response to the removal of extracellular cartilage matrix. J Cell Biol. 1978 Nov;79(2 Pt 1):342–355. doi: 10.1083/jcb.79.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FEWER D., THREADGOLD J., ANDSHELDON H. STUDIES ON CARTILAGE. V. ELECTRON MICROSCOPIC OBSERVATIONS ON THE AUTORADIOGRAPHIC LOCALIZATION OF S35 IN CELLS AND MATRIX. J Ultrastruct Res. 1964 Aug;11:166–172. doi: 10.1016/s0022-5320(64)80100-3. [DOI] [PubMed] [Google Scholar]
  13. Faltynek C. R., Silbert J. E. Biosynthesis of chondroitin sulfate: microsomal proteoglycans. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1502–1508. doi: 10.1016/0006-291x(78)91391-8. [DOI] [PubMed] [Google Scholar]
  14. Farquhar M. G., Palade G. E. The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol. 1981 Dec;91(3 Pt 2):77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fellini S. A., Pacifici M., Holtzer H. Changes in the sulfated proteoglycans synthesized by "aging" chondrocytes. II. Organ-cultured vertebral columns. J Biol Chem. 1981 Jan 25;256(2):1038–1043. [PubMed] [Google Scholar]
  16. Freilich L. S., Lewis R. G., Reppucci A. C., Jr, Silbert J. E. Galactosyl transferase of a Golgi fraction from cultured neoplastic mast cells. J Cell Biol. 1977 Mar;72(3):655–666. doi: 10.1083/jcb.72.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Freilich L. S., Lewis R. G., Reppucci A. C., Jr, Silbert J. E. Glycosaminoglycan-synthesizing activity of an isolated Golgi preparation from cultured mast cells. Biochem Biophys Res Commun. 1975 Apr 7;63(3):663–668. doi: 10.1016/s0006-291x(75)80435-9. [DOI] [PubMed] [Google Scholar]
  18. GODMAN G. C., LANE N. ON THE SITE OF SULFATION IN THE CHONDROCYTE. J Cell Biol. 1964 Jun;21:353–366. doi: 10.1083/jcb.21.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Graves P. N., Olsen B. R., Fietzek P. P., Prockop D. J., Monson J. M. Comparison of the NH2-Terminal sequences of chick Type I preprocollagen chains synthesized in an nRNA-dependent reticulocyte lysate. Eur J Biochem. 1981 Aug;118(2):363–369. doi: 10.1111/j.1432-1033.1981.tb06411.x. [DOI] [PubMed] [Google Scholar]
  20. Hardingham T. E., Muir H. The specific interaction of hyaluronic acid with cartillage proteoglycans. Biochim Biophys Acta. 1972 Sep 15;279(2):401–405. doi: 10.1016/0304-4165(72)90160-2. [DOI] [PubMed] [Google Scholar]
  21. Harwood R., Grant M. E., Jackson D. S. The route of secretion of procollagen. The influence of alphaalpha'-bipyridyl, colchicine and antimycin A on the secretory process in embryonic-chick tendon and cartilage cells. Biochem J. 1976 Apr 15;156(1):81–90. doi: 10.1042/bj1560081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hascall G. K. Ultrastructure of the chondrocytes and extracellular matrix of the swarm rat chondrosarcoma. Anat Rec. 1980 Oct;198(2):135–146. doi: 10.1002/ar.1091980202. [DOI] [PubMed] [Google Scholar]
  23. Heinegård D., Hascall V. C. Aggregation of cartilage proteoglycans. 3. Characteristics of the proteins isolated from trypsin digests of aggregates. J Biol Chem. 1974 Jul 10;249(13):4250–4256. [PubMed] [Google Scholar]
  24. Heinegård D. Hyaluronidase digestion and alkaline treatment of bovine tracheal cartilage proteoglycans. Isolation and characterisation of different keratan sulfate proteins. Biochim Biophys Acta. 1972 Nov 28;285(1):193–207. doi: 10.1016/0005-2795(72)90191-2. [DOI] [PubMed] [Google Scholar]
  25. Hiller G., Weber K. Golgi detection in mitotic and interphase cells by antibodies to secreted galactosyltransferase. Exp Cell Res. 1982 Nov;142(1):85–94. doi: 10.1016/0014-4827(82)90412-8. [DOI] [PubMed] [Google Scholar]
  26. Holtzer H., Bennett G. S., Tapscott S. J., Croop J. M., Toyama Y. Intermediate-size filaments: changes in synthesis and distribution in cells of the myogenic and neurogenic lineages. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):317–329. doi: 10.1101/sqb.1982.046.01.033. [DOI] [PubMed] [Google Scholar]
  27. Karim A., Cournil I., Leblond C. P. Immunohistochemical localization of procollagens. II. Electron microscopic distribution of procollagen I antigenicity in the odontoblasts and predentin of rat incisor teeth by a direct method using peroxidase linked antibodies. J Histochem Cytochem. 1979 Jul;27(7):1070–1083. doi: 10.1177/27.7.89154. [DOI] [PubMed] [Google Scholar]
  28. Kessler S. W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol. 1975 Dec;115(6):1617–1624. [PubMed] [Google Scholar]
  29. Kim J. J., Conrad H. E. Proteochondroitin sulfate synthesis in subcultured chick embryo tibial chondrocytes. J Biol Chem. 1982 Feb 25;257(4):1670–1675. [PubMed] [Google Scholar]
  30. Kimata K., Okayama M., Suzuki S., Suzuki I., Hoshino M. Nascent mucopolysaccharides attached to the Golgi membrane of chondrocytes. Biochim Biophys Acta. 1971 Jun 22;237(3):606–610. doi: 10.1016/0304-4165(71)90282-0. [DOI] [PubMed] [Google Scholar]
  31. Kimura J. H., Caputo C. B., Hascall V. C. The effect of cycloheximide on synthesis of proteoglycans by cultured chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1981 May 10;256(9):4368–4376. [PubMed] [Google Scholar]
  32. Kimura J. H., Osdoby P., Caplan A. I., Hascall V. C. Electron microscopic and biochemical studies of proteoglycan polydispersity in chick limb bud chondrocyte cultures. J Biol Chem. 1978 Jul 10;253(13):4721–4729. [PubMed] [Google Scholar]
  33. Kimura J. H., Thonar E. J., Hascall V. C., Reiner A., Poole A. R. Identification of core protein, an intermediate in proteoglycan biosynthesis in cultured chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1981 Aug 10;256(15):7890–7897. [PubMed] [Google Scholar]
  34. Kitamura K., Yamagata T. The occurrence of a new type of proteochondroitin sulfate in the developing chick embryo. FEBS Lett. 1976 Dec 1;71(2):337–340. doi: 10.1016/0014-5793(76)80965-9. [DOI] [PubMed] [Google Scholar]
  35. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  36. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  37. Lohmander L. S., De Luca S., Nilsson B., Hascall V. C., Caputo C. B., Kimura J. H., Heinegard D. Oligosaccharides on proteoglycans from the swarm rat chondrosarcoma. J Biol Chem. 1980 Jul 10;255(13):6084–6091. [PubMed] [Google Scholar]
  38. Lowe M. E., Pacifici M., Holtzer H. Effects of phorbol-12-myristate-13-acetate on the phenotypic program of cultured chondroblasts and fibroblasts. Cancer Res. 1978 Aug;38(8):2350–2356. [PubMed] [Google Scholar]
  39. McKeown P. J., Goetinck P. F. A comparison of the proteoglycans synthesized in Meckel's and sternal cartilage from normal and nanomelic chick embryos. Dev Biol. 1979 Aug;71(2):203–215. doi: 10.1016/0012-1606(79)90164-7. [DOI] [PubMed] [Google Scholar]
  40. Miller E. J., Matukas V. J. Chick cartilage collagen: a new type of alpha 1 chain not present in bone or skin of the species. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1264–1268. doi: 10.1073/pnas.64.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Moskalewski S., Thyberg J., Lohmander S., Friberg U. Influence of colchicine and vinblastine on the golgi complex and matrix deposition in chondrocyte aggregates. An ultrastructural study. Exp Cell Res. 1975 Oct 15;95(2):440–454. doi: 10.1016/0014-4827(75)90569-8. [DOI] [PubMed] [Google Scholar]
  42. Nist C., Von Der Mark K., Hay E. D., Olsen B. R., Bornstein P., Ross R., Dehm P. Location of procollagen in chick corneal and tendon fibroblasts with ferritin-conjugated antibodies. J Cell Biol. 1975 Apr;65(1):75–87. doi: 10.1083/jcb.65.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Oegema T. R., Jr, Hascall V. C., Eisenstein R. Characterization of bovine aorta proteoglycan extracted with guanidine hydrochloride in the presence of protease inhibitors. J Biol Chem. 1979 Feb 25;254(4):1312–1318. [PubMed] [Google Scholar]
  44. Okayama M., Pacifici M., Holtzer H. Differences among sulfated proteoglycans synthesized in nonchondrogenic cells, presumptive chondroblasts, and chondroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3224–3228. doi: 10.1073/pnas.73.9.3224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Olsen B. R., Prockop D. J. Ferritin-conjugated antibodies used for labeling of organelles involved in the cellular synthesis and transport of procollagen. Proc Natl Acad Sci U S A. 1974 May;71(5):2033–2037. doi: 10.1073/pnas.71.5.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pacifici M., Boettiger D., Roby K., Holtzer H. Transformation of chondroblasts by Rous sarcoma virus and synthesis of the sulfated proteoglycan matrix. Cell. 1977 Aug;11(4):891–899. doi: 10.1016/0092-8674(77)90300-2. [DOI] [PubMed] [Google Scholar]
  47. Pacifici M., Fellini S. A., Holtzer H., De Luca S. Changes in the sulfated proteoglycans synthesized by "aging" chondrocytes. I. Dispersed cultured chondrocytes and in vivo cartilages. J Biol Chem. 1981 Jan 25;256(2):1029–1037. [PubMed] [Google Scholar]
  48. Pacifici M., Holtzer H. 12-O-tetradecanoylphorbol-13-acetate-induced changes in sulfated proteoglycan synthesis in cultured chondroblasts. Cancer Res. 1980 Jul;40(7):2461–2464. [PubMed] [Google Scholar]
  49. Palmiter R. D., Davidson J. M., Gagnon J., Rowe D. W., Bornstein P. NH2-terminal sequence of the chick proalpha1(I) chain synthesized in the reticulocyte lysate system. Evidence for a transient hydrophobic leader sequence. J Biol Chem. 1979 Mar 10;254(5):1433–1436. [PubMed] [Google Scholar]
  50. Paulsson M., Heinegård D. Purification and structural characterization of a cartilage matrix protein. Biochem J. 1981 Aug 1;197(2):367–375. doi: 10.1042/bj1970367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Poole A. R., Reddi A. H., Rosenberg L. C. Persistence of Cartilage proteoglycan and link protein during matrix-induced endochondral bone development: an immunofluorescent study. Dev Biol. 1982 Feb;89(2):532–539. doi: 10.1016/0012-1606(82)90343-8. [DOI] [PubMed] [Google Scholar]
  52. Royal P. D., Sparks K. J., Goetinck P. F. Physical and immunochemical characterization of proteoglycans synthesized during chondrogenesis in the chick embryo. J Biol Chem. 1980 Oct 25;255(20):9870–9878. [PubMed] [Google Scholar]
  53. Schmid T. M., Conrad H. E. A unique low molecular weight collagen secreted by cultured chick embryo chondrocytes. J Biol Chem. 1982 Oct 25;257(20):12444–12450. [PubMed] [Google Scholar]
  54. Shanley D. J., Cossu G., Boettiger D., Holtzer H., Pacifici M. Transformation by Rous sarcoma virus induces similar patterns of glycosaminoglycan synthesis in chick embryo skin fibroblasts and vertebral chondroblasts. J Biol Chem. 1983 Jan 25;258(2):810–816. [PubMed] [Google Scholar]
  55. Sternberger L. A., Hardy P. H., Jr, Cuculis J. J., Meyer H. G. The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem. 1970 May;18(5):315–333. doi: 10.1177/18.5.315. [DOI] [PubMed] [Google Scholar]
  56. Thyberg J., Lohmander S., Friberg U. Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage. J Ultrastruct Res. 1973 Dec;45(5):407–427. doi: 10.1016/s0022-5320(73)80070-x. [DOI] [PubMed] [Google Scholar]
  57. Tokunaka S., Friedman T. M., Toyama Y., Pacifici M., Holtzer H. Taxol induces microtubule-rough endoplasmic reticulum complexes and microtubule-bundles in cultured chondroblasts. Differentiation. 1983;24(1):39–47. doi: 10.1111/j.1432-0436.1983.tb01300.x. [DOI] [PubMed] [Google Scholar]
  58. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Treadwell B. V., Mankin D. P., Ho P. K., Mankin H. J. Cell-free synthesis of cartilage proteins: partial identification of proteoglycan core and link proteins. Biochemistry. 1980 May 13;19(10):2269–2275. doi: 10.1021/bi00551a043. [DOI] [PubMed] [Google Scholar]
  60. Upholt W. B., Vertel B. M., Dorfman A. Translation and characterization of messenger RNAs in differentiating chicken cartilage. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4847–4851. doi: 10.1073/pnas.76.10.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Vertel B. M., Dorfman A. Simultaneous localization of type II collagen and core protein of chondroitin sulfate proteoglycan in individual chondrocytes. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1261–1264. doi: 10.1073/pnas.76.3.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Weinstock M., Leblond C. P. Synthesis, migration, and release of precursor collagen by odontoblasts as visualized by radioautography after (3H)proline administration. J Cell Biol. 1974 Jan;60(1):92–127. doi: 10.1083/jcb.60.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wiebkin O. W., Muir H. Synthesis of cartilage-specific proteoglycan by suspension cultures of adult chondrocytes. Biochem J. 1977 Apr 15;164(1):269–272. doi: 10.1042/bj1640269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem. 1968 Apr 10;243(7):1523–1535. [PubMed] [Google Scholar]
  65. von der Mark H., von der Mark K., Gay S. Study of differential collagen synthesis during development of the chick embryo by immunofluorescence. I. Preparation of collagen type I and type II specific antibodies and their application to early stages of the chick embryo. Dev Biol. 1976 Feb;48(2):237–249. doi: 10.1016/0012-1606(76)90088-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES