Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Dec 1;97(6):1834–1840. doi: 10.1083/jcb.97.6.1834

Molecular morphology of the tetrodotoxin-binding sodium channel protein from Electrophorus electricus in solubilized and reconstituted preparations

PMCID: PMC2112724  PMID: 6315745

Abstract

The appearance of detergent-solubilized voltage-regulated sodium channel protein was recently characterized by this laboratory. Negative- staining revealed rod-shaped particles measuring 40 X 170 A. Further studies have suggested that the actual configuration of this protein may be quite different from the rod-shaped structures. Freeze-fracture and freeze-etch images of the protein in reconstituted membranes indicated that the channel is cylindrical with a diameter of 100 A and a minimum length of 80 A. Experiments with two detergent systems (Lubrol-PX and sodium cholate) enabled us to explain the discrepancy between this structure and the rod-shaped particles visualized earlier. Negative staining in either detergent at low pH (4.5) produced rod- shaped structures. As the pH was increased, doughnut-shaped particles, consistent with the structure of the protein in freeze-etch, appeared in negative stain. The tendency of the protein to change shape under different pH conditions appears to be a peculiar property of this protein.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnew W. S., Levinson S. R., Brabson J. S., Raftery M. A. Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2606–2610. doi: 10.1073/pnas.75.6.2606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agnew W. S., Raftery M. A. Solubilized tetrodotoxin binding component from the electroplax of Electrophorus electricus. Stability as a function of mixed lipid-detergent micelle composition. Biochemistry. 1979 May 15;18(10):1912–1919. doi: 10.1021/bi00577a010. [DOI] [PubMed] [Google Scholar]
  3. Armstrong C. M. Sodium channels and gating currents. Physiol Rev. 1981 Jul;61(3):644–683. doi: 10.1152/physrev.1981.61.3.644. [DOI] [PubMed] [Google Scholar]
  4. Barchi R. L., Cohen S. A., Murphy L. E. Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1306–1310. doi: 10.1073/pnas.77.3.1306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barchi R. L. Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J Neurochem. 1983 May;40(5):1377–1385. doi: 10.1111/j.1471-4159.1983.tb13580.x. [DOI] [PubMed] [Google Scholar]
  6. Einarson B., Gullick W., Conti-Tronconi B., Ellisman M., Lindstrom J. Subunit composition of bovine muscle acetylcholine receptor. Biochemistry. 1982 Oct 12;21(21):5295–5302. doi: 10.1021/bi00264a027. [DOI] [PubMed] [Google Scholar]
  7. Ellisman M. H., Agnew W. S., Miller J. A., Levinson S. R. Electron microscopic visualization of the tetrodotoxin-binding protein from Electrophorus electricus. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4461–4465. doi: 10.1073/pnas.79.14.4461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hartshorne R. P., Catterall W. A. Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4620–4624. doi: 10.1073/pnas.78.7.4620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartshorne R. P., Messner D. J., Coppersmith J. C., Catterall W. A. The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits. J Biol Chem. 1982 Dec 10;257(23):13888–13891. [PubMed] [Google Scholar]
  10. Kistler J., Stroud R. M., Klymkowsky M. W., Lalancette R. A., Fairclough R. H. Structure and function of an acetylcholine receptor. Biophys J. 1982 Jan;37(1):371–383. doi: 10.1016/S0006-3495(82)84685-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levinson S. R., Curatalo C. J., Reed J., Raftery M. A. A rapid and precise assay for tetrodotoxin binding to detergent extracts of excitable tissues. Anal Biochem. 1979 Oct 15;99(1):72–84. doi: 10.1016/0003-2697(79)90045-9. [DOI] [PubMed] [Google Scholar]
  12. Levinson S. R. The purity of tritiated tetrodotoxin as determined by bioassay. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):337–348. doi: 10.1098/rstb.1975.0013. [DOI] [PubMed] [Google Scholar]
  13. Lindstrom J., Gullick W., Conti-Tronconi B., Ellisman M. Proteolytic nicking of the acetylcholine receptor. Biochemistry. 1980 Oct 14;19(21):4791–4795. doi: 10.1021/bi00562a012. [DOI] [PubMed] [Google Scholar]
  14. Miller J. A., Agnew W. S., Levinson S. R. Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry. 1983 Jan 18;22(2):462–470. doi: 10.1021/bi00271a032. [DOI] [PubMed] [Google Scholar]
  15. Moore A. C., Agnew W. S., Raftery M. A. Biochemical characterization of the tetrodotoxin binding protein from Electrophorus electricus. Biochemistry. 1982 Nov 23;21(24):6212–6220. doi: 10.1021/bi00267a029. [DOI] [PubMed] [Google Scholar]
  16. Unwin P. N., Zampighi G. Structure of the junction between communicating cells. Nature. 1980 Feb 7;283(5747):545–549. doi: 10.1038/283545a0. [DOI] [PubMed] [Google Scholar]
  17. Weigele J. B., Barchi R. L. Functional reconstitution of the purified sodium channel protein from rat sarcolemma. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3651–3655. doi: 10.1073/pnas.79.11.3651. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES