Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Dec 1;97(6):1795–1805. doi: 10.1083/jcb.97.6.1795

The changes in structural organization of actin in the sea urchin egg cortex in response to hydrostatic pressure

PMCID: PMC2112726  PMID: 6643578

Abstract

We have used hydrostatic pressure to study the structural organization of actin in the sea urchin egg cortex and the role of cortical actin in early development. Pressurization of Arbacia punctulata eggs to 6,000 psi at the first cleavage division caused the regression of the cleavage furrow and the disappearance of actin filament bundles from the microvilli. Within 30 s to 1 min of decompression these bundles reformed and furrowing resumed. Pressurization of dividing eggs to 7,500 psi caused both the regression of the cleavage furrow and the complete loss of microvilli from the egg surface. Following release from this higher pressure, the eggs underwent extensive, uncoordinated surface contractions, but failed to cleave. The eggs gradually regained their spherical shape and cleaved directly into four cells at the second cleavage division. Microvilli reformed on the egg surface over a period of time corresponding to that required for the recovery of normal egg shape and stability. During the initial stages of their regrowth the microvilli contained a network of actin filaments that began to transform into bundles when the microvilli had reached approximately 2/3 of their final length. These results demonstrate that moderate levels of hydrostatic pressure cause the reversible disruption of cortical actin organization, and suggest that this network of actin stabilizes the egg surface and participates in the formation of the contractile ring during cytokinesis. The results also demonstrate that actin filament bundles are not required for the regrowth of microvilli after their removal by pressurization. Preliminary experiments demonstrate that F-actin is not depolymerized in vitro by pressures up to 10,000 psi and suggest that pressure may act indirectly in vivo, either by changing the intracellular ionic environment or by altering the interaction of actin binding proteins with actin.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begg D. A., Rebhun L. I., Hyatt H. Structural organization of actin in the sea urchin egg cortex: microvillar elongation in the absence of actin filament bundle formation. J Cell Biol. 1982 Apr;93(1):24–32. doi: 10.1083/jcb.93.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Begg D. A., Rebhun L. I. pH regulates the polymerization of actin in the sea urchin egg cortex. J Cell Biol. 1979 Oct;83(1):241–248. doi: 10.1083/jcb.83.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Begg D. A., Rodewald R., Rebhun L. I. The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane-associated filaments. J Cell Biol. 1978 Dec;79(3):846–852. doi: 10.1083/jcb.79.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bryan J., Kane R. E. Actin gelation in sea urchin egg extracts. Methods Cell Biol. 1982;25(Pt B):175–199. doi: 10.1016/s0091-679x(08)61425-9. [DOI] [PubMed] [Google Scholar]
  5. Burgess D. R., Schroeder T. E. Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. J Cell Biol. 1977 Sep;74(3):1032–1037. doi: 10.1083/jcb.74.3.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burridge K., Feramisco J. R. Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature. 1981 Dec 10;294(5841):565–567. doi: 10.1038/294565a0. [DOI] [PubMed] [Google Scholar]
  7. Byrd W., Perry G. Cytochalasin B blocks sperm incorporation but allows activation of the sea urchin egg. Exp Cell Res. 1980 Apr;126(2):333–342. doi: 10.1016/0014-4827(80)90272-4. [DOI] [PubMed] [Google Scholar]
  8. Carron C. P., Longo F. J. Relation of cytoplasmic alkalinization to microvillar elongation and microfilament formation in the sea urchin egg. Dev Biol. 1982 Jan;89(1):128–137. doi: 10.1016/0012-1606(82)90301-3. [DOI] [PubMed] [Google Scholar]
  9. Chambers C., Grey R. D. Development of the structural components of the brush border in absorptive cells of the chick intestine. Cell Tissue Res. 1979;204(3):387–405. doi: 10.1007/BF00233651. [DOI] [PubMed] [Google Scholar]
  10. Chandler D. E., Heuser J. Postfertilization growth of microvilli in the sea urchin egg: new views from eggs that have been quick-frozen, freeze-fractured, and deeply etched. Dev Biol. 1981 Mar;82(2):393–400. doi: 10.1016/0012-1606(81)90463-2. [DOI] [PubMed] [Google Scholar]
  11. Cooper J. A., Pollard T. D. Methods to measure actin polymerization. Methods Enzymol. 1982;85(Pt B):182–210. doi: 10.1016/0076-6879(82)85021-0. [DOI] [PubMed] [Google Scholar]
  12. Eddy E. M., Shapiro B. M. Changes in the topography of the sea urchin egg after fertilization. J Cell Biol. 1976 Oct;71(1):35–48. doi: 10.1083/jcb.71.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fujinami N. Studies on the mechanism of circus movement in dissociated embryonic cells of a teleost, Oryzias latipes: fine-structural observations. J Cell Sci. 1976 Oct;22(1):133–147. doi: 10.1242/jcs.22.1.133. [DOI] [PubMed] [Google Scholar]
  14. Hiramoto Y. Mechanical properties of the surface of the sea urchin egg at fertilization and during cleavage. Exp Cell Res. 1974 Dec;89(2):320–326. doi: 10.1016/0014-4827(74)90796-4. [DOI] [PubMed] [Google Scholar]
  15. Hiramoto Y. Rheological properties of sea urchin eggs. Biorheology. 1970 Jan;6(3):201–234. doi: 10.3233/bir-1970-6306. [DOI] [PubMed] [Google Scholar]
  16. Hosoya H., Mabuchi I., Sakai H. Actin modulating proteins in the sea urchin egg. I. Analysis of G-actin-binding proteins by DNase I-affinity chromatography and purification of a 17,000 molecular weight component. J Biochem. 1982 Dec;92(6):1853–1862. doi: 10.1093/oxfordjournals.jbchem.a134115. [DOI] [PubMed] [Google Scholar]
  17. Ikkai T., Ooi T., Noguchi H. Actin: volume change on transformation of G-form to F-form. Science. 1966 Jun 24;152(3730):1756–1757. doi: 10.1126/science.152.3730.1756. [DOI] [PubMed] [Google Scholar]
  18. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  19. Khalil M. T., Lauffer M. A. Polymerization-depolymerization of tobacco mosaic virus protein. X. Effect of D20. Biochemistry. 1967 Aug;6(8):2474–2480. doi: 10.1021/bi00860a025. [DOI] [PubMed] [Google Scholar]
  20. LANDAU J. V., MARSLAND D., ZIMMERMAN A. M. The energetics of cell division: effects of adenosine triphosphate and related substances on the furrowing capacity of marine eggs (Arbacia and Chaetopterus). J Cell Physiol. 1955 Apr;45(2):309–329. doi: 10.1002/jcp.1030450210. [DOI] [PubMed] [Google Scholar]
  21. LANDAU J. V., THIBODEAU L. The micromorphology of Amoeba proteus during pressure-induced changes in the sol-gel cycle. Exp Cell Res. 1962 Sep;27:591–594. doi: 10.1016/0014-4827(62)90027-7. [DOI] [PubMed] [Google Scholar]
  22. MARSLAND D. PARTIAL REVERSAL OF THE ANTI-MITOTIC EFFECTS OF HEAVY WATER BY HIGH HYDROSTATIC PRESSURE. AN ANALYSIS OF THE FIRST CLEAVAGE DIVISON IN THE EGGS OF STRONGYLOCENTROTUS PURPURATUS. Exp Cell Res. 1965 Jun;38:592–603. doi: 10.1016/0014-4827(65)90383-6. [DOI] [PubMed] [Google Scholar]
  23. MARSLAND D. The mechanisms of cell division; temperature-pressure experiments on the cleaving eggs of Arbacia punctulata. J Cell Physiol. 1950 Oct;36(2):205–227. doi: 10.1002/jcp.1030360207. [DOI] [PubMed] [Google Scholar]
  24. Mabuchi I. Purification from starfish eggs of a protein that depolymerizes actin. J Biochem. 1981 Apr;89(4):1341–1344. [PubMed] [Google Scholar]
  25. Mabuchi I., Spudich J. A. Purification and properties of soluble actin from sea urchin eggs. J Biochem. 1980 Mar;87(3):785–802. doi: 10.1093/oxfordjournals.jbchem.a132808. [DOI] [PubMed] [Google Scholar]
  26. Margossian S. S., Lowey S. Substructure of the myosin molecule. IV. Interactions of myosin and its subfragments with adenosine triphosphate and F-actin. J Mol Biol. 1973 Mar 5;74(3):313–330. doi: 10.1016/0022-2836(73)90376-8. [DOI] [PubMed] [Google Scholar]
  27. Marsland D., Asterita H. Counteraction of the anti-mitotic effects of D20 in the dividing eggs of Argacia punctulata: a temperature-pressure analysis. Exp Cell Res. 1966 May;42(2):316–327. doi: 10.1016/0014-4827(66)90296-5. [DOI] [PubMed] [Google Scholar]
  28. Otto J. J., Kane R. E., Bryan J. Redistribution of actin and fascin in sea urchin eggs after fertilization. Cell Motil. 1980;1(1):31–40. doi: 10.1002/cm.970010104. [DOI] [PubMed] [Google Scholar]
  29. REBHUN L. I. Dispersal of the vitelline membrane of the eggs of Spisula solidissima by alkaline, isotonic NaCl. J Ultrastruct Res. 1962 Apr;6:123–134. doi: 10.1016/s0022-5320(62)90048-5. [DOI] [PubMed] [Google Scholar]
  30. REBHUN L. I. Induced amoeboid movement in eggs of the surfclam Spisula solidissima. Exp Cell Res. 1963 Feb;29:593–602. doi: 10.1016/s0014-4827(63)80019-1. [DOI] [PubMed] [Google Scholar]
  31. Rappaport R. Establishment and organization of the cleavage mechanism. Soc Gen Physiol Ser. 1975;30:287–304. [PubMed] [Google Scholar]
  32. Rebhun L. I. Induction of amoeboid movement in marine eggs. Soc Gen Physiol Ser. 1975;30:233–238. [PubMed] [Google Scholar]
  33. Salmon E. D., Ellis G. W. A new miniature hydrostatic pressure chamber for microscopy. Strain-free optical glass windows facilitate phase-contrast and polarized-light microscopy of living cells. Optional fixture permits simultaneous control of pressure and temperature. J Cell Biol. 1975 Jun;65(3):587–602. doi: 10.1083/jcb.65.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Salmon E. D., Goode D., Maugel T. K., Bonar D. B. Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells. J Cell Biol. 1976 May;69(2):443–454. doi: 10.1083/jcb.69.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Salmon E. D. Pressure-induced depolymerization of brain microtubules in vitro. Science. 1975 Sep 12;189(4206):884–886. doi: 10.1126/science.1171523. [DOI] [PubMed] [Google Scholar]
  36. Salmon E. D. Pressure-induced depolymerization of spindle microtubules. I. Changes in birefringence and spindle length. J Cell Biol. 1975 Jun;65(3):603–614. doi: 10.1083/jcb.65.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schatten G., Schatten H. Effects of motility inhibitors during sea urchin fertilization: microfilament inhibitors prevent sperm incorporation and restructuring of fertilized egg cortex, whereas microtubule inhibitors prevent pronuclear migrations. Exp Cell Res. 1981 Oct;135(2):311–330. doi: 10.1016/0014-4827(81)90167-1. [DOI] [PubMed] [Google Scholar]
  38. Schatten H., Schatten G. Surface activity at the egg plasma membrane during sperm incorporation and its cytochalasin B sensitivity. Scanning electron microscopy and time-lapse video microscopy during fertilization of the sea urchin Lytechinus variegatus. Dev Biol. 1980 Aug;78(2):435–449. doi: 10.1016/0012-1606(80)90345-0. [DOI] [PubMed] [Google Scholar]
  39. Schliwa M. Proteins associated with cytoplasmic actin. Cell. 1981 Sep;25(3):587–590. doi: 10.1016/0092-8674(81)90166-5. [DOI] [PubMed] [Google Scholar]
  40. Schroeder T. E. Surface area change at fertilization: resorption of the mosaic membrane. Dev Biol. 1979 Jun;70(2):306–326. doi: 10.1016/0012-1606(79)90030-7. [DOI] [PubMed] [Google Scholar]
  41. Spudich A., Spudich J. A. Actin in triton-treated cortical preparations of unfertilized and fertilized sea urchin eggs. J Cell Biol. 1979 Jul;82(1):212–226. doi: 10.1083/jcb.82.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  43. Tilney L. G., Cardell R. R. Factors controlling the reassembly of the microvillous border of the small intestine of the salamander. J Cell Biol. 1970 Nov 1;47(2):408–422. doi: 10.1083/jcb.47.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tilney L. G., Gibbins J. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J Cell Biol. 1969 Apr;41(1):227–250. doi: 10.1083/jcb.41.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tilney L. G., Jaffe L. A. Actin, microvilli, and the fertilization cone of sea urchin eggs. J Cell Biol. 1980 Dec;87(3 Pt 1):771–782. doi: 10.1083/jcb.87.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wang Y. L., Taylor D. L. Distribution of fluorescently labeled actin in living sea urchin eggs during early development. J Cell Biol. 1979 Jun;81(3):672–679. doi: 10.1083/jcb.81.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weeds A. Actin-binding proteins--regulators of cell architecture and motility. Nature. 1982 Apr 29;296(5860):811–816. doi: 10.1038/296811a0. [DOI] [PubMed] [Google Scholar]
  48. White J. G., Borisy G. G. On the mechanisms of cytokinesis in animal cells. J Theor Biol. 1983 Mar 21;101(2):289–316. doi: 10.1016/0022-5193(83)90342-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES