Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Dec 1;97(6):1753–1761. doi: 10.1083/jcb.97.6.1753

Ion currents and membrane domains in the cleaving Xenopus egg

PMCID: PMC2112734  PMID: 6643577

Abstract

We used an extracellular vibrating probe to measure ion currents through the cleaving Xenopus laevis egg. Measurements indicate sharp membrane heterogeneities. Current leaves the first cleavage furrow after new, unpigmented membrane is inserted. This outward current may be carried by K+ efflux. No direct involvement of the Na+,K+-ATPase in the generation of this outward current is detected at first cleavage. Inward current enters the old, pigmented membrane; however, it does not enter uniformly. The inward current is largest at the old membrane bordering the new membrane. This suggests a heterogeneous ion channel distribution within the old membrane. Experiments suggest that the inward current may be carried by Na+ influx, Ca2+ influx, and Cl- efflux. No steady currents were detected during grey crescent formation, the surface contraction waves preceding cleavage, or with groove formation at the beginning of cleavage.

Full Text

The Full Text of this article is available as a PDF (987.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Taylor S. R. Interaction of barium ions with potassium channels in squid giant axons. Biophys J. 1980 Jun;30(3):473–488. doi: 10.1016/S0006-3495(80)85108-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benos D. J. Ouabain binding to preimplantation rabbit blastocysts. Dev Biol. 1981 Apr 15;83(1):69–78. doi: 10.1016/s0012-1606(81)80009-7. [DOI] [PubMed] [Google Scholar]
  3. Bluemink J. G., Tertoolen L. G., Ververgaert P. H., Verkleij A. J. Freeze-fracture electron microscopy of preexisting and nascent cell membrane in cleaving eggs of Xenopus laevis. Biochim Biophys Acta. 1976 Aug 4;443(1):143–155. doi: 10.1016/0005-2736(76)90498-3. [DOI] [PubMed] [Google Scholar]
  4. Bluemink J. G., de Laat S. W. New membrane formation during cytokinesis in normal and cytochalasin B-treated eggs of Xenopus laevis. I. Electron microscope observations. J Cell Biol. 1973 Oct;59(1):89–108. doi: 10.1083/jcb.59.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  6. Denis-Donini S., Baccetti B., Monroy A. Morphological changes of the surface of the eggs of Xenopus laevis in the course of development. 2. Cytokinesis and early cleavage. J Ultrastruct Res. 1976 Oct;57(1):104–112. doi: 10.1016/s0022-5320(76)80060-3. [DOI] [PubMed] [Google Scholar]
  7. DiCaprio R. A., French A. S., Sanders E. J. On the mechanism of electrical coupling between cells of early Xenopus embryos. J Membr Biol. 1976 Jun 30;27(4):393–408. doi: 10.1007/BF01869148. [DOI] [PubMed] [Google Scholar]
  8. Ernst S. A., Mills J. W. Basolateral plasma membrane localiztion of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland. J Cell Biol. 1977 Oct;75(1):74–94. doi: 10.1083/jcb.75.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hagiwara S., Byerly L. Calcium channel. Annu Rev Neurosci. 1981;4:69–125. doi: 10.1146/annurev.ne.04.030181.000441. [DOI] [PubMed] [Google Scholar]
  11. Hagiwara S., Kidokoro Y. Na and Ca components of action potential in amphioxus muscle cells. J Physiol. 1971 Dec;219(1):217–232. doi: 10.1113/jphysiol.1971.sp009658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hara K., Tydeman P., Kirschner M. A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. Proc Natl Acad Sci U S A. 1980 Jan;77(1):462–466. doi: 10.1073/pnas.77.1.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaffe L. F. Control of development by ionic currents. Soc Gen Physiol Ser. 1979;33:199–231. [PubMed] [Google Scholar]
  14. Jaffe L. F. Electrophoresis along cell membranes. Nature. 1977 Feb 17;265(5595):600–602. doi: 10.1038/265600a0. [DOI] [PubMed] [Google Scholar]
  15. Jaffe L. F., Nuccitelli R. An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol. 1974 Nov;63(2 Pt 1):614–628. doi: 10.1083/jcb.63.2.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jaffe L. F., Nuccitelli R. Electrical controls of development. Annu Rev Biophys Bioeng. 1977;6:445–476. doi: 10.1146/annurev.bb.06.060177.002305. [DOI] [PubMed] [Google Scholar]
  17. Jaffe L. F., Stern C. D. Strong electrical currents leave the primitive streak of chick embryos. Science. 1979 Nov 2;206(4418):569–571. doi: 10.1126/science.573921. [DOI] [PubMed] [Google Scholar]
  18. Jaffe L. F. The role of ionic currents in establishing developmental pattern. Philos Trans R Soc Lond B Biol Sci. 1981 Oct 7;295(1078):553–566. doi: 10.1098/rstb.1981.0160. [DOI] [PubMed] [Google Scholar]
  19. Kalt M. R. The relationship between cleavage and blastocoel formation in Xenopus laevis. II. Electron microscopic observations. J Embryol Exp Morphol. 1971 Aug;26(1):51–66. [PubMed] [Google Scholar]
  20. Louvard D. Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4132–4136. doi: 10.1073/pnas.77.7.4132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Luchtel D., Bluemink J. G., de Laat S. W. The effect of injected cytochalasin B on filament organization in the cleaving egg of Xenopus laevis. J Ultrastruct Res. 1976 Mar;54(3):406–419. doi: 10.1016/s0022-5320(76)80026-3. [DOI] [PubMed] [Google Scholar]
  22. Messenger E. A., Warner A. E. The function of the sodium pump during differentiation of amphibian embryonic neurones. J Physiol. 1979 Jul;292:85–105. doi: 10.1113/jphysiol.1979.sp012840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nuccitelli R. Oöplasmic segregation and secretion in the Pelvetia egg is accompanied by a membrane-generated electrical current. Dev Biol. 1978 Jan;62(1):13–33. doi: 10.1016/0012-1606(78)90089-1. [DOI] [PubMed] [Google Scholar]
  24. Roberson M. M., Armstrong P. B. Carbohydrate-binding component of amphibian embryo cell surfaces: restriction to surface regions capable of cell adhesion. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3460–3463. doi: 10.1073/pnas.77.6.3460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roberson M. M., Armstrong P. B. Regional segregation of ConA receptors on dissociated amphibian embryo cells. Exp Cell Res. 1979 Aug;122(1):23–29. doi: 10.1016/0014-4827(79)90556-1. [DOI] [PubMed] [Google Scholar]
  26. Robinson K. R. Electrical currents through full-grown and maturing Xenopus oocytes. Proc Natl Acad Sci U S A. 1979 Feb;76(2):837–841. doi: 10.1073/pnas.76.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sachs J. R. Interaction of external K, Na, and cardioactive steroids with the Na-K pump of the human red blood cell. J Gen Physiol. 1974 Feb;63(2):123–143. doi: 10.1085/jgp.63.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sanders E. J., Dicaprio R. A. A freeze-fracture and concanavalin A-binding study of the membrane of cleaving Xenopus embryos. Differentiation. 1976 Nov 2;7(1):13–21. doi: 10.1111/j.1432-0436.1977.tb01492.x. [DOI] [PubMed] [Google Scholar]
  29. Sanders E. J., Singal P. K. Furrow formation in Xenopus embryos. Involvement of the golgi body as revealed by ultrastructural localization of thiamine pyrophosphatase activity. Exp Cell Res. 1975 Jun;93(1):219–224. doi: 10.1016/0014-4827(75)90442-5. [DOI] [PubMed] [Google Scholar]
  30. Selman G. G., Perry M. M. Ultrastructural changes in the surface layers of the newt's egg in relation to the mechanism of its cleavage. J Cell Sci. 1970 Jan;6(1):207–227. doi: 10.1242/jcs.6.1.207. [DOI] [PubMed] [Google Scholar]
  31. Singal P. K., Sanders E. J. An ultrastructural study of the first cleavage of Xenopus embryos. J Ultrastruct Res. 1974 Jun;47(3):433–451. doi: 10.1016/s0022-5320(74)90019-7. [DOI] [PubMed] [Google Scholar]
  32. Singal P. K., Sanders E. J. Cytomembranes in first cleavage Xenopus embryos. Interrelationship between Golgi bodies, endoplasmic reticulum and lipid droplets. Cell Tissue Res. 1974;154(2):189–209. doi: 10.1007/BF00223164. [DOI] [PubMed] [Google Scholar]
  33. Slack C., Warner A. E. Intracellular and intercellular potentials in the early amphibian embryo. J Physiol. 1973 Jul;232(2):313–330. doi: 10.1113/jphysiol.1973.sp010272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Standen N. B., Stanfield P. R. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. J Physiol. 1978 Jul;280:169–191. doi: 10.1113/jphysiol.1978.sp012379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vorbrodt A., Konwinski M., Solter D., Koprowski H. Ultrastructural cytochemistry of membrane-bound phosphatases in preimplantation mouse embryos. Dev Biol. 1977 Jan;55(1):117–134. doi: 10.1016/0012-1606(77)90324-4. [DOI] [PubMed] [Google Scholar]
  36. Webb D. J., Nuccitelli R. Direct measurement of intracellular pH changes in Xenopus eggs at fertilization and cleavage. J Cell Biol. 1981 Nov;91(2 Pt 1):562–567. doi: 10.1083/jcb.91.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Woodruff R. I., Telfer W. H. Electrophoresis of proteins in intercellular bridges. Nature. 1980 Jul 3;286(5768):84–86. doi: 10.1038/286084a0. [DOI] [PubMed] [Google Scholar]
  38. Woodward D. J. Electrical signs of new membrane production during cleavage of Rana pipiens eggs. J Gen Physiol. 1968 Sep;52(3):509–531. doi: 10.1085/jgp.52.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. de Laat S. W., Buwalda R. J., Habets A. M. Intracellular ionic distribution, cell membrane permeability and membrane potential of the Xenopus egg during first cleavage. Exp Cell Res. 1974 Nov;89(1):1–14. doi: 10.1016/0014-4827(74)90180-3. [DOI] [PubMed] [Google Scholar]
  40. de Laat W. S., Bluemink J. G. New membrane formation during cytokinesis in normal and cytochalasin B-treated eggs of Xenopus laevis. II. Electrophysiological observations. J Cell Biol. 1974 Mar;60(3):529–540. doi: 10.1083/jcb.60.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES