Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Dec 1;97(6):1906–1917. doi: 10.1083/jcb.97.6.1906

Visualization of the exocytosis/endocytosis secretory cycle in cultured adrenal chromaffin cells

PMCID: PMC2112740  PMID: 6643581

Abstract

Cultured bovine adrenal medullary chromaffin cells were stimulated to secrete catecholamines by addition of veratridine or nicotine. The formation of an exocytotic pit exposes a major secretory granule membrane antigen, the enzyme dopamine beta-hydroxylase, to the external medium. By including antiserum to this enzyme in the medium, we were able to visualize sites of exocytosis by decoration of bound antibody using a fluorescent second antibody. Internalization of this antibody- antigen complex was then followed in chase experiments: approximately half the surface complex was internalized in 15-30 min. In other experiments, secretion was triggered in the absence of antiserum, and surface enzyme was revealed by binding antibodies at various times after secretion had been halted by an antagonist. Surface patches of antigen remained discrete from the bulk of the plasma membrane for at least 30 min, although a substantial proportion of the antigen was internalized within this time. Cell surface concanavalin A receptors were internalized at a roughly similar rate, suggesting that mechanisms may be similar. After internalization, chromaffin granule membranes fused to larger structures, possibly lysosomes, and were transported over a few hours to the perinuclear region of the cell.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbs M. T., Phillips J. H. Organisation of the proteins of the chromaffin granule membrane. Biochim Biophys Acta. 1980 Jan 25;595(2):200–221. doi: 10.1016/0005-2736(80)90084-x. [DOI] [PubMed] [Google Scholar]
  2. Ash J. F., Singer S. J. Concanavalin-A-induced transmembrane linkage of concanavalin A surface receptors to intracellular myosin-containing filaments. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4575–4579. doi: 10.1073/pnas.73.12.4575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benedeczky I., Smith A. D. Ultrastructural studies on the adrenal medulla of golden hamster: origin and fate of secretory granules. Z Zellforsch Mikrosk Anat. 1972;124(3):367–386. doi: 10.1007/BF00355037. [DOI] [PubMed] [Google Scholar]
  4. Bretscher M. S. Distribution of receptors for transferrin and low density lipoprotein on the surface of giant HeLa cells. Proc Natl Acad Sci U S A. 1983 Jan;80(2):454–458. doi: 10.1073/pnas.80.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burridge K., Kelly T., Mangeat P. Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types. J Cell Biol. 1982 Nov;95(2 Pt 1):478–486. doi: 10.1083/jcb.95.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Camilli P., Peluchetti D., Meldolesi J. Dynamic changes of the luminal plasmalemma in stimulated parotid acinar cells. A freeze-fracture study. J Cell Biol. 1976 Jul;70(1):59–74. doi: 10.1083/jcb.70.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edwards A. V., Furness P. N., Helle K. B. Adrenal medullary responses to stimulation of the splanchnic nerve in the conscious calf. J Physiol. 1980 Nov;308:15–27. doi: 10.1113/jphysiol.1980.sp013458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fenwick E. M., Fajdiga P. B., Howe N. B., Livett B. G. Functional and morphological characterization of isolated bovine adrenal medullary cells. J Cell Biol. 1978 Jan;76(1):12–30. doi: 10.1083/jcb.76.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glenney J. R., Jr, Glenney P., Weber K. Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4002–4005. doi: 10.1073/pnas.79.13.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grynszpan-Winograd O. Morphological aspects of exocytosin in the adrenal medulla. Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):291–292. doi: 10.1098/rstb.1971.0058. [DOI] [PubMed] [Google Scholar]
  11. Hesketh J. E., Ciesielski-Treska J., Aunis D. A phase-contrast and immunofluorescence study of adrenal medullary chromaffin cells in culture: neurite formation, actin and chromaffin granule distribution. Cell Tissue Res. 1981;218(2):331–343. doi: 10.1007/BF00210348. [DOI] [PubMed] [Google Scholar]
  12. Huber E., König P., Schuler G., Aberer W., Plattner H., Winkler H. Characterization and topography of the glycoproteins of adrenal chromaffin granules. J Neurochem. 1979 Jan;32(1):35–47. doi: 10.1111/j.1471-4159.1979.tb04507.x. [DOI] [PubMed] [Google Scholar]
  13. Hunter A., Waldron K., Apps D. K. Determination of the proportion of sealed vesicles in a preparation of chromaffin granule membrane 'ghosts'. FEBS Lett. 1982 Jul 19;144(1):51–56. doi: 10.1016/0014-5793(82)80567-x. [DOI] [PubMed] [Google Scholar]
  14. Kilpatrick D. L., Ledbetter F. H., Carson K. A., Kirshner A. G., Slepetis R., Kirshner N. Stability of bovine adrenal medulla cells in culture. J Neurochem. 1980 Sep;35(3):679–692. doi: 10.1111/j.1471-4159.1980.tb03707.x. [DOI] [PubMed] [Google Scholar]
  15. Kilpatrick D. L., Slepetis R., Kirshner N. Inhibition of catecholamine secretion from adrenal medulla cells by neurotoxins and cholinergic antagonists. J Neurochem. 1981 Jul;37(1):125–131. doi: 10.1111/j.1471-4159.1981.tb05299.x. [DOI] [PubMed] [Google Scholar]
  16. Kilpatrick D. L., Slepetis R., Kirshner N. Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J Neurochem. 1981 Mar;36(3):1245–1255. doi: 10.1111/j.1471-4159.1981.tb01724.x. [DOI] [PubMed] [Google Scholar]
  17. Koerker R. L., Hahn W. E., Schneider F. H. Electron translucent vesicles in adrenal medulla following catecholamine depletion. Eur J Pharmacol. 1974 Oct;28(2):350–359. doi: 10.1016/0014-2999(74)90289-1. [DOI] [PubMed] [Google Scholar]
  18. Koike H., Meldolesi J. Post-stimulation retrieval of luminal surface membrane in parotid acinar cells is calcium-dependent. Exp Cell Res. 1981 Aug;134(2):377–388. doi: 10.1016/0014-4827(81)90437-7. [DOI] [PubMed] [Google Scholar]
  19. Levine J., Willard M. Fodrin: axonally transported polypeptides associated with the internal periphery of many cells. J Cell Biol. 1981 Sep;90(3):631–642. doi: 10.1083/jcb.90.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lingg G., Fischer-Colbrie R., Schmidt W., Winkler H. Exposure of an antigen of chromaffin granules on cell surface during exocytosis. Nature. 1983 Feb 17;301(5901):610–611. doi: 10.1038/301610a0. [DOI] [PubMed] [Google Scholar]
  21. Meldolesi J., Ceccarelli B. Exocytosis and membrane recycling. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):55–65. doi: 10.1098/rstb.1981.0171. [DOI] [PubMed] [Google Scholar]
  22. Nagasawa J., Douglas W. W. Thorium dioxide uptake into adrenal medullary cells and the problem of recapture of granule membrane following exocytosis. Brain Res. 1972 Feb 11;37(1):141–145. doi: 10.1016/0006-8993(72)90356-3. [DOI] [PubMed] [Google Scholar]
  23. Phillips J. H. Dynamic aspects of chromaffin granule structure. Neuroscience. 1982 Jul;7(7):1595–1609. doi: 10.1016/0306-4522(82)90017-3. [DOI] [PubMed] [Google Scholar]
  24. Salisbury J. L., Condeelis J. S., Maihle N. J., Satir P. Receptor-mediated endocytosis by clathrin-coated vesicles: evidence for a dynamic pathway. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):733–741. doi: 10.1101/sqb.1982.046.01.070. [DOI] [PubMed] [Google Scholar]
  25. Smith U., Smith D. S., Winkler H., Ryan J. W. Exocytosis in the adrenal medulla demonstrated by freeze-etching. Science. 1973 Jan 5;179(4068):79–82. doi: 10.1126/science.179.4068.79. [DOI] [PubMed] [Google Scholar]
  26. Trifaró J. M., Bourne G. W. Differential effects of concanavalin A on acetylcholine and potassium-evoked release of catecholamines from cultured chromaffin cells. Neuroscience. 1981;6(9):1823–1833. doi: 10.1016/0306-4522(81)90216-5. [DOI] [PubMed] [Google Scholar]
  27. Wallace E. F., Lovenberg W. Studies on the carbohydrate moiety of dopamine beta-hydroxylase: interaction of the enzyme with concanavalin A. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3217–3220. doi: 10.1073/pnas.71.8.3217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson S. P., Chang K. J., Viveros O. H. Proportional secretion of opioid peptides and catecholamines from adrenal chromaffin cells in culture. J Neurosci. 1982 Aug;2(8):1150–1156. doi: 10.1523/JNEUROSCI.02-08-01150.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilson S. P., Viveros O. H. Primary culture of adrenal medullary chromaffin cells in a chemically defined medium. Exp Cell Res. 1981 May;133(1):159–169. doi: 10.1016/0014-4827(81)90366-9. [DOI] [PubMed] [Google Scholar]
  30. Winkler H., Westhead E. The molecular organization of adrenal chromaffin granules. Neuroscience. 1980;5(11):1803–1823. doi: 10.1016/0306-4522(80)90031-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES