Abstract
I microinjected calcium ions into echinoderm eggs during mitosis to determine the calcium sensitivity of microtubules (Mts) in vivo. Spindle birefringence (BR), a measure of the number of aligned Mts in the spindle, is locally, rapidly, and reversibly abolished by small volumes of microinjected CaCl2 (1 mM). Rapid return of BR is followed by anaphase, and subsequent divisions are normal. Similar doses of MgCl2, BaCl2, KCl, NaCl, pH buffers, distilled water, or vegetable oil have no effect on spindle BR, whereas large doses of such agents sometimes cause slow, uniform loss in BR over the course of a minute or more. Of the ions tested, only Sr++ causes effects comparable to Ca++. Ca-EGTA buffers, containing greater than micromolar free Ca++, abolishes BR in a manner similar to millimolar concentrations of injected CaCl2. Caffeine, a potent uncoupler of the Ca++-pump/ATPase of sarcoplasmic reticulum, causes a local, transient depression in spindle BR in the injected region. Finally, injection of potassium oxalate results in the formation of small, highly BR crystals, presumably CA- oxalate, in Triton-sensitive compartments in the cytoplasm. Taken together, these findings demonstrate that spindle Mts are sensitive to levels of free Ca++ in the physiological range, provide evidence for the existence of a strong cytoplasmic Ca++-sequestering system, and support the notion that Mt assembly and disassembly in local regions of the spindle may be orchestrated by local changes in the cytoplasmic free Ca++ concentration during mitosis. An appendix offers the design of a new chamber for immobilizing echinoderm eggs for injection, a new method for determining the volume of the injected solution, and a description of the microinjection technique, which was designed, but never fully described, by Hiramoto (Y. Hiramoto, Exp. Cell. Res., 1962, 27:416-426.).
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen D. G., Blinks J. R., Prendergast F. G. Aequorin luminescence: relation of light emission to calcium concentration--a calcium-independent component. Science. 1977 Mar 11;195(4282):996–998. doi: 10.1126/science.841325. [DOI] [PubMed] [Google Scholar]
- Begg D. A., Ellis G. W. Micromanipulation studies of chromosome movement. I. Chromosome-spindle attachment and the mechanical properties of chromosomal spindle fibers. J Cell Biol. 1979 Aug;82(2):528–541. doi: 10.1083/jcb.82.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergen L. G., Borisy G. G. Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J Cell Biol. 1980 Jan;84(1):141–150. doi: 10.1083/jcb.84.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergen L. G., Kuriyama R., Borisy G. G. Polarity of microtubules nucleated by centrosomes and chromosomes of Chinese hamster ovary cells in vitro. J Cell Biol. 1980 Jan;84(1):151–159. doi: 10.1083/jcb.84.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P., Ratzlaff R. W., Kendrick N. C., Schweitzer E. S. Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J Gen Physiol. 1978 Jul;72(1):15–41. doi: 10.1085/jgp.72.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinley F. J., Jr, Tiffert T., Scarpa A. Mitochondria and other calcium buffers of squid axon studied in situ. J Gen Physiol. 1978 Jul;72(1):101–127. doi: 10.1085/jgp.72.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COSTANTIN L. L., FRANZINI-ARMSTRONG C., PODOLSKY R. J. LOCALIZATION OF CALCIUM-ACCUMULATING STRUCTURES IN STRIATED MUSCLE FIBERS. Science. 1965 Jan 8;147(3654):158–160. doi: 10.1126/science.147.3654.158. [DOI] [PubMed] [Google Scholar]
- Ettienne E. Subcellular localization of calcium repositories in plasmodia of the acellular slime mold Physarum polycephalum. J Cell Biol. 1972 Jul;54(1):179–184. doi: 10.1083/jcb.54.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuge H. The arrangement of microtubules and the attachment of chromosomes to the spindle during anaphase in tipulid spermatocytes. Chromosoma. 1974 Apr 9;45(3):245–260. doi: 10.1007/BF00283409. [DOI] [PubMed] [Google Scholar]
- Fuge H. Ultrastructure of the mitotic spindle. Int Rev Cytol Suppl. 1977;(6):1–58. [PubMed] [Google Scholar]
- Fuller G. M., Brinkley B. R. Structure and control of assembly of cytoplasmic microtubules in normal and transformed cells. J Supramol Struct. 1976;5(4):497(349)–514(366). doi: 10.1002/jss.400050407. [DOI] [PubMed] [Google Scholar]
- Fuseler J. W. Repetitive procurement of mature gametes from individual sea stars and sea urchins. J Cell Biol. 1973 Jun;57(3):879–881. doi: 10.1083/jcb.57.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HIRAMOTO Y. Microinjection of the live spermatozoa into sea urchin eggs. Exp Cell Res. 1962 Sep;27:416–426. doi: 10.1016/0014-4827(62)90006-x. [DOI] [PubMed] [Google Scholar]
- Haga T., Abe T., Kurokawa M. Polymerization and depolymerization of microtubules in vitro as studied by flow birefringence. FEBS Lett. 1974 Mar 1;39(3):291–295. doi: 10.1016/0014-5793(74)80133-x. [DOI] [PubMed] [Google Scholar]
- Harris P. The role of membranes in the ogranization of the mitotic apparatus. Exp Cell Res. 1975 Sep;94(2):409–425. doi: 10.1016/0014-4827(75)90507-8. [DOI] [PubMed] [Google Scholar]
- Head J. F., Mader S., Kaminer B. Calcium-binding modulator protein from the unfertilized egg of the sea urchin Arbacia punctulata. J Cell Biol. 1979 Jan;80(1):211–218. doi: 10.1083/jcb.80.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heidemann S. R., Kirschner M. W. Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies. J Cell Biol. 1975 Oct;67(1):105–117. doi: 10.1083/jcb.67.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henkart M. P., Reese T. S., Brinley F. J., Jr Endoplasmic reticulum sequesters calcium in the squid giant axon. Science. 1978 Dec 22;202(4374):1300–1303. doi: 10.1126/science.725607. [DOI] [PubMed] [Google Scholar]
- Hepler P. K. Membranes in the mitotic apparatus of barley cells. J Cell Biol. 1980 Aug;86(2):490–499. doi: 10.1083/jcb.86.2.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Borisy G. G., Kiehart D. P. Growth and lability of Chaetopterus oocyte mitotic spindles isolated in the presence of porcine brain tubulin. J Cell Biol. 1974 Jul;62(1):175–184. doi: 10.1083/jcb.62.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Fuseler J., Salmon E. D., Ellis G. W. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system. Biophys J. 1975 Jul;15(7):725–744. doi: 10.1016/S0006-3495(75)85850-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Ritter H., Jr Mitosis in Barbulanympha. II. Dynamics of a two-stage anaphase, nuclear morphogenesis, and cytokinesis. J Cell Biol. 1978 Jun;77(3):655–684. doi: 10.1083/jcb.77.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
- Johnson K. A., Borisy G. G. The equilibrium assembly of microtubules in vitro. Soc Gen Physiol Ser. 1975;30:119–141. [PubMed] [Google Scholar]
- Kinoshita S., Yazaki I. The behaviour and localization of intracellular relaxing system during cleavage in the sea urchin egg. Exp Cell Res. 1967 Sep;47(3):449–458. doi: 10.1016/0014-4827(67)90003-1. [DOI] [PubMed] [Google Scholar]
- Marcum J. M., Dedman J. R., Brinkley B. R., Means A. R. Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3771–3775. doi: 10.1073/pnas.75.8.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
- McGill M., Brinkley B. R. Human chromosomes and centrioles as nucleating sites for the in vitro assembly of microtubules from bovine brain tubulin. J Cell Biol. 1975 Oct;67(1):189–199. doi: 10.1083/jcb.67.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Means A. R., Dedman J. R. Calmodulin--an intracellular calcium receptor. Nature. 1980 May 8;285(5760):73–77. doi: 10.1038/285073a0. [DOI] [PubMed] [Google Scholar]
- Nath J., Rebhun L. I. Studies on cyclic AMP levels and phosphodiesterase activity in developing sea urchin eggs. Effects of puromycin, 6-dimethylamino purine and aminophylline. Exp Cell Res. 1973 Mar 15;77(1):319–322. doi: 10.1016/0014-4827(73)90583-1. [DOI] [PubMed] [Google Scholar]
- Nath J., Rebhun L. I. Studies on the uptake and metabolism of adenosine 3':5'-cyclic monophosphate and N6,O2-dibutyryl 3':5'-cyclic adenosine monophosphate in sea urchin eggs. Exp Cell Res. 1973 Nov;82(1):73–78. doi: 10.1016/0014-4827(73)90246-2. [DOI] [PubMed] [Google Scholar]
- Olmsted J. B., Borisy G. G. Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry. 1975 Jul;14(13):2996–3005. doi: 10.1021/bi00684a032. [DOI] [PubMed] [Google Scholar]
- PODOLSKY R. J., COSTANTIN L. L. REGULATION BY CALCIUM OF THE CONTRACTION AND RELAXATION OF MUSCLE FIBERS. Fed Proc. 1964 Sep-Oct;23:933–939. [PubMed] [Google Scholar]
- PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
- Petzelt C. Biochemistry of the mitotic spindle. Int Rev Cytol. 1979;60:53–92. doi: 10.1016/s0074-7696(08)61259-0. [DOI] [PubMed] [Google Scholar]
- Rebhun L. I., Jemiolo D., Ivy N., Mellon M., Nath J. Regulation of the in vivo mitotic apparatus by glycols and metabolic inhibitors. Ann N Y Acad Sci. 1975 Jun 30;253:362–377. doi: 10.1111/j.1749-6632.1975.tb19214.x. [DOI] [PubMed] [Google Scholar]
- Rebhun L. I., Mellon M., Jemiolo D., Nath J., Ivy N. Regulation of size and birefringence of the in vivo mitotic apparatus. J Supramol Struct. 1974;2(2-4):466–485. doi: 10.1002/jss.400020232. [DOI] [PubMed] [Google Scholar]
- Rebhun L. I., Rosenbaum J., Lefebvre P., Smith G. Reversible restoration of the birefringence of cold-treated, isolated mitotic apparatus of surf clam eggs with chick brain tubulin. Nature. 1974 May 10;249(453):113–115. doi: 10.1038/249113a0. [DOI] [PubMed] [Google Scholar]
- Rose B., Loewenstein W. R. Calcium ion distribution in cytoplasm visualised by aequorin: diffusion in cytosol restricted by energized sequestering. Science. 1975 Dec 19;190(4220):1204–1206. doi: 10.1126/science.1198106. [DOI] [PubMed] [Google Scholar]
- Rosenfeld A. C., Zackroff R. V., Weisenberg R. C. Magnesium stimulation of calcium binding to tubulin and calcium induced depolymerization of microtubules. FEBS Lett. 1976 Jun 1;65(2):144–147. doi: 10.1016/0014-5793(76)80466-8. [DOI] [PubMed] [Google Scholar]
- SUTHERLAND E. W., RALL T. W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem. 1958 Jun;232(2):1077–1091. [PubMed] [Google Scholar]
- Salmon E. D. Pressure-induced depolymerization of spindle microtubules. I. Changes in birefringence and spindle length. J Cell Biol. 1975 Jun;65(3):603–614. doi: 10.1083/jcb.65.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmon E. D., Segall R. R. Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variegatus). J Cell Biol. 1980 Aug;86(2):355–365. doi: 10.1083/jcb.86.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmon E. D. Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement. Ann N Y Acad Sci. 1975 Jun 30;253:383–406. doi: 10.1111/j.1749-6632.1975.tb19216.x. [DOI] [PubMed] [Google Scholar]
- Sato H., Ellis G. W., Inoué S. Microtubular origin of mitotic spindle form birefringence. Demonstration of the applicability of Wiener's equation. J Cell Biol. 1975 Dec;67(3):501–517. doi: 10.1083/jcb.67.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schliwa M. The role of divalent cations in the regulation of microtubule assembly. In vivo studies on microtubules of the heliozoan axopodium using the ionophore A23187. J Cell Biol. 1976 Sep;70(3):527–540. doi: 10.1083/jcb.70.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver R. B., Cole R. D., Cande W. Z. Isolation of mitotic apparatus containing vesicles with calcium sequestration activity. Cell. 1980 Feb;19(2):505–516. doi: 10.1016/0092-8674(80)90525-5. [DOI] [PubMed] [Google Scholar]
- Snyder J. A., McIntosh J. R. Initiation and growth of microtubules from mitotic centers in lysed mammalian cells. J Cell Biol. 1975 Dec;67(3):744–760. doi: 10.1083/jcb.67.3.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G. How microtubule patterns are generated. The relative importance of nucleation and bridging of microtubules in the formation of the axoneme of Raphidiophrys. J Cell Biol. 1971 Dec;51(3):837–854. doi: 10.1083/jcb.51.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Timasheff S. N., Grisham L. M. In vitro assembly of cytoplasmic microtubules. Annu Rev Biochem. 1980;49:565–591. doi: 10.1146/annurev.bi.49.070180.003025. [DOI] [PubMed] [Google Scholar]
- Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber A. The mechanism of the action of caffeine on sarcoplasmic reticulum. J Gen Physiol. 1968 Nov;52(5):760–772. doi: 10.1085/jgp.52.5.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139–150. doi: 10.1016/s0022-2836(76)80100-3. [DOI] [PubMed] [Google Scholar]
- Weisenberg R. C., Deery W. J., Dickinson P. J. Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules. Biochemistry. 1976 Sep 21;15(19):4248–4254. doi: 10.1021/bi00664a018. [DOI] [PubMed] [Google Scholar]
- Weisenberg R. C., Deery W. J. Role of nucleotide hydrolysis in microtubule assembly. Nature. 1976 Oct 28;263(5580):792–793. doi: 10.1038/263792a0. [DOI] [PubMed] [Google Scholar]
- Weisenberg R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science. 1972 Sep 22;177(4054):1104–1105. doi: 10.1126/science.177.4054.1104. [DOI] [PubMed] [Google Scholar]
- Weisenberg R. C., Rosenfeld A. C. In vitro polymerization of microtubules into asters and spindles in homogenates of surf clam eggs. J Cell Biol. 1975 Jan;64(1):146–158. doi: 10.1083/jcb.64.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh M. J., Dedman J. R., Brinkley B. R., Means A. R. Tubulin and calmodulin. Effects of microtubule and microfilament inhibitors on localization in the mitotic apparatus. J Cell Biol. 1979 Jun;81(3):624–634. doi: 10.1083/jcb.81.3.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolniak S. M., Hepler P. K., Jackson W. T. Detection of the membrane-calcium distribution during mitosis in Haemanthus endosperm with chlorotetracycline. J Cell Biol. 1980 Oct;87(1):23–32. doi: 10.1083/jcb.87.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]