Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Mar 1;88(3):492–498. doi: 10.1083/jcb.88.3.492

Regulation of the synthesis of lactate dehydrogenase-X during spermatogenesis in the mouse

PMCID: PMC2112762  PMID: 7217199

Abstract

Total mouse testis RNA directs the synthesis of the sperm-specific C subunit of lactate dehydrogenase-X (LDH-X) when translated in a cell- free system derived from rabbit reticulocytes. The newly synthesized C subunits were isolated by immunoprecipitation with antibody specific for this isozyme, and quantitated by electrophoresis on SDS polyacrylamide gels. The amount of radioactivity incorporated into the enzyme subunit was directly proportional to the amount of testis RNA added to the translational system, thereby providing a sensitive and reliable method for assessing relative LDH-X mRNA activity. A combination of sucrose gradient centrifugation and oligo(dT)-cellulose chromatography resulted in a 23-fold purification of LDH-X mRNA over total cytoplasmic testis RNA. Analysis of LDH-X mRNA activity in the developing testis indicated that the appearance of functional LDH-X mRNA activity coincides with the appearance of LDH-X catalytic activity at 14 d postpartum. Measurement of LDH-X mRNA levels in separated testis cell populations prepared by centrifugal elutriation demonstrated that LDH-X mRNA represents 0.17-0.18% of the total functional mRNA activity in fractions enriched in pachytene spermatocytes and round spermatids, but only 0.09-0.10% of the translation products of elongated spermatids.

Full Text

The Full Text of this article is available as a PDF (713.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beatty R. A. The genetics of the mammalian gamete. Biol Rev Camb Philos Soc. 1970 Feb;45(1):73–119. doi: 10.1111/j.1469-185x.1970.tb01076.x. [DOI] [PubMed] [Google Scholar]
  3. Bellvé A. R., Anderson E., Hanley Bowdoin L. Synthesis and amino acid composition of basic proteins in mammalian sperm nuclei. Dev Biol. 1975 Dec;47(2):349–365. doi: 10.1016/0012-1606(75)90289-4. [DOI] [PubMed] [Google Scholar]
  4. Bellvé A. R., Cavicchia J. C., Millette C. F., O'Brien D. A., Bhatnagar Y. M., Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol. 1977 Jul;74(1):68–85. doi: 10.1083/jcb.74.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett W. I., Gall A. M., Southard J. L., Sidman R. L. Abnormal spermiogenesis in quaking, a myelin-deficient mutant mouse. Biol Reprod. 1971 Aug;5(1):30–58. doi: 10.1093/biolreprod/5.1.30. [DOI] [PubMed] [Google Scholar]
  6. Berlin C. M., Schimke R. T. Influence of turnover rates on the responses of enzymes to cortisone. Mol Pharmacol. 1965 Sep;1(2):149–156. [PubMed] [Google Scholar]
  7. Brock W. A. Evidence against gene expression after meiosis in the male mouse. J Exp Zool. 1977 Oct;202(1):69–80. doi: 10.1002/jez.1402020109. [DOI] [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Dym M., Fawcett D. W. Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol Reprod. 1971 Apr;4(2):195–215. doi: 10.1093/biolreprod/4.2.195. [DOI] [PubMed] [Google Scholar]
  10. Erickson R. P. Genetic control of glutamate oxaloacetic transaminase in murine spermatozoa. Exp Cell Res. 1974 Jun;86(2):429–430. doi: 10.1016/0014-4827(74)90738-1. [DOI] [PubMed] [Google Scholar]
  11. FAWCETT D. W., ITO S., SLAUTTERBACK D. The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J Biophys Biochem Cytol. 1959 May 25;5(3):453–460. doi: 10.1083/jcb.5.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GOLDBERG E. LACTATE DEHYDROGENASES IN SPERMATOZOA: SUBUNIT INTERACTIONS IN VITRO. Arch Biochem Biophys. 1965 Jan;109:134–141. doi: 10.1016/0003-9861(65)90298-5. [DOI] [PubMed] [Google Scholar]
  13. Geremia R., Boitani C., Conti M., Monesi V. RNA synthesis in spermatocytes and spermatids and preservation of meiotic RNA during spermiogenesis in the mouse. Cell Differ. 1977 Mar;5(5-6):343–355. doi: 10.1016/0045-6039(77)90072-0. [DOI] [PubMed] [Google Scholar]
  14. Goldberg E., Hawtrey C. The ontogeny of sperm specific lactate dehydrogenase in mice. J Exp Zool. 1967 Apr;164(3):309–316. doi: 10.1002/jez.1401640302. [DOI] [PubMed] [Google Scholar]
  15. Hunt D. M., Johnson D. R. Abnormal spermiogenesis in two pink-eyed sterile mutants in the mouse. J Embryol Exp Morphol. 1971 Aug;26(1):111–121. [PubMed] [Google Scholar]
  16. Johnson D. R., Hunt D. M. Hop-sterile, a mutant gene affecting sperm tail development in the mouse. J Embryol Exp Morphol. 1971 Apr;25(2):223–236. [PubMed] [Google Scholar]
  17. Kalt M. R. In vitro synthesis of RNA by Xenopus spermatogenic cells I. Evidence for polyadenylated and non-polyadenylated RNA synthesis in different cell populations. J Exp Zool. 1979 Apr;208(1):77–96. doi: 10.1002/jez.1402080110. [DOI] [PubMed] [Google Scholar]
  18. Kellems R. E., Alt F. W., Schimke R. T. Regulation of folate reductase synthesis in sensitive and methotrexate-resistant sarcoma 180 cells. In vitro translation and characterization of folate reductase mRNA. J Biol Chem. 1976 Nov 25;251(22):6987–6993. [PubMed] [Google Scholar]
  19. Kierszenbaum A. L., Tres L. L. Structural and transcriptional features of the mouse spermatid genome. J Cell Biol. 1975 May;65(2):258–270. doi: 10.1083/jcb.65.2.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Killewich L. A., Feigelson P. Developmental control of messenger RNA for hepatic tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5392–5396. doi: 10.1073/pnas.74.12.5392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kistler W. S., Geroch M. E., Williams-Ashman H. G. Specific basic proteins from mammalian testes. Isolation and properties of small basic proteins from rat testes and epididymal spermatozoa. J Biol Chem. 1973 Jul 10;248(13):4532–4543. [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lefebvre P. A., Nordstrom S. A., Moulder J. E., Rosenbaum J. L. Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis. J Cell Biol. 1978 Jul;78(1):8–27. doi: 10.1083/jcb.78.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MONESI V. RIBONUCLEIC ACID SYNTHESIS DURING MITOSIS AND MEIOSIS IN THE MOUSE TESTIS. J Cell Biol. 1964 Sep;22:521–532. doi: 10.1083/jcb.22.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Markert C. L., Holmes R. S. Lactate dehydrogenase isozymes of the flatfish, Pleuronectiformes: kinetic, molecular and immunochemical analysis. J Exp Zool. 1969 May;171(1):85–104. doi: 10.1002/jez.1401710112. [DOI] [PubMed] [Google Scholar]
  26. Meistrich M. L., Trostle P. K., Frapart M., Erickson R. P. Biosynthesis and localization of lactate dehydrogenase X in pachytene spermatocytes and spermatids of mouse testes. Dev Biol. 1977 Oct 15;60(2):428–441. doi: 10.1016/0012-1606(77)90140-3. [DOI] [PubMed] [Google Scholar]
  27. Monesi V., Geremia R., D'Agostino A., Boitani C. Biochemistry of male germ cell differentiation in mammals: RNA synthesis in meiotic and postmeiotic cells. Curr Top Dev Biol. 1978;12:11–36. doi: 10.1016/s0070-2153(08)60592-x. [DOI] [PubMed] [Google Scholar]
  28. Monesi V. Synthetic activities during spermatogenesis in the mouse RNA and protein. Exp Cell Res. 1965 Aug;39(1):197–224. doi: 10.1016/0014-4827(65)90023-6. [DOI] [PubMed] [Google Scholar]
  29. Moore G. P. DNA-dependent RNA synthesis in fixed cells during spermatogenesis in mouse. Exp Cell Res. 1971 Oct;68(2):462–465. doi: 10.1016/0014-4827(71)90176-5. [DOI] [PubMed] [Google Scholar]
  30. Nadal-Ginard B. Evidence for the lack of feedback regulation of gene activity and for the absence of subunit exchange between lactate dehydrogenase tetramers in vivo. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3618–3622. doi: 10.1073/pnas.73.10.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nadal-Ginard B. Regulation of lactate dehydrogenase levels in the mouse. J Biol Chem. 1978 Jan 10;253(1):170–177. [PubMed] [Google Scholar]
  32. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  33. Wheat T. E., Goldberg E. An allelic variant of the sperm-specific lactate dehydrogenase C4 (LDH-X) isozyme in humans. J Exp Zool. 1977 Dec;202(3):425–430. doi: 10.1002/jez.1402020312. [DOI] [PubMed] [Google Scholar]
  34. ZINKHAM W. H., BLANCO A., KUPCHYK L. LACTATE DEHYDROGENASE IN PIGEON TESTES: GENETIC CONTROL BY THREE LOCI. Science. 1964 Jun 12;144(3624):1353–1354. doi: 10.1126/science.144.3624.1353. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES