Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Dec 1;91(3):827–836. doi: 10.1083/jcb.91.3.827

Characterization of a myoepithelial cell line derived from a neonatal rat mammary gland

PMCID: PMC2112821  PMID: 7199047

Abstract

A clonal, myoepithelial-like cell line has been obtained from a primary culture established from the mammary gland of a 7-d-old rat. In a number of respects, this cell line, termed Rama 401, resembles the myoepithelial cells of the mammary gland, especially when grown on floating collagen gels. The cells grow as multilayers on the gel surface and form branching structures that do not appear to contain a lumen. They are rather elongated, with irregular-shaped, flattened nuclei that contain large amounts of peripheral chromatin. Elongated processes project from the cell surface and numerous membrane pinocytotic vesicles can be seen. The cytoplasm is filled with linear arrays of 5- to 7-nm filaments with occasional dense foci. Cell junctions with associated 8- to 11-nm tonofilaments are also observed. Immunofluorescence techniques reveal actin and myosin filaments and also intermediate filaments of both prekeratin and vimentin types. Rama 401 cells secrete an amorphous material that, when an immunoperoxidase technique is used, stains with antibodies to basement membrane-specific type IV collagen. Localized densities of the cell membrane, which resemble hemidesmosomes, are located adjacent to these extracellular deposits. Immunofluorescence staining and immunoprecipitation techniques reveal that the cells also synthesize two other basement membrane proteins, laminin and fibronectin. The type IV collagen consists of two chains with molecular weights of 195,000 and 185,000.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson E. D., Gaunt S. J., Graham C. F. The differentiation of teratocarcinoma stem cells is marked by the types of collagen which are synthesized. Cell. 1979 Jul;17(3):469–476. doi: 10.1016/0092-8674(79)90254-x. [DOI] [PubMed] [Google Scholar]
  2. Alitalo K., Kurkinen M., Vaheri A., Krieg T., Timpl R. Extracellular matrix components synthesized by human amniotic epithelial cells in culture. Cell. 1980 Apr;19(4):1053–1062. doi: 10.1016/0092-8674(80)90096-3. [DOI] [PubMed] [Google Scholar]
  3. Alitalo K., Kurkinen M., Vaheri A., Virtanen I., Rohde H., Timpl R. Basal lamina glycoproteins are produced by neuroblastoma cells. Nature. 1980 Oct 2;287(5781):465–466. doi: 10.1038/287465a0. [DOI] [PubMed] [Google Scholar]
  4. Alitalo K., Vaheri A., Krieg T., Timpl R. Biosynthesis of two subunits of type IV procollagen and of other basement membrane proteins by a human tumor cell line. Eur J Biochem. 1980 Aug;109(1):247–255. doi: 10.1111/j.1432-1033.1980.tb04790.x. [DOI] [PubMed] [Google Scholar]
  5. Archer F. L., Kao V. C. Immunohistochemical identification of actomyosin in myoepithelium of human tissues. Lab Invest. 1968 Jun;18(6):669–674. [PubMed] [Google Scholar]
  6. Bennett D. C. Morphogenesis of branching tubules in cultures of cloned mammary epithelial cells. Nature. 1980 Jun 26;285(5767):657–659. doi: 10.1038/285657a0. [DOI] [PubMed] [Google Scholar]
  7. Bennett D. C., Peachey L. A., Durbin H., Rudland P. S. A possible mammary stem cell line. Cell. 1978 Sep;15(1):283–298. doi: 10.1016/0092-8674(78)90104-6. [DOI] [PubMed] [Google Scholar]
  8. Burridge K., Feramisco J. R. Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell. 1980 Mar;19(3):587–595. doi: 10.1016/s0092-8674(80)80035-3. [DOI] [PubMed] [Google Scholar]
  9. Crouch E., Sage H., Bornstein P. Structural basis for apparent heterogeneity of collagens in human basement membranes: type IV procollagen contains two distinct chains. Proc Natl Acad Sci U S A. 1980 Feb;77(2):745–749. doi: 10.1073/pnas.77.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drochmans P., Freudenstein C., Wanson J. C., Laurent L., Keenan T. W., Stadler J., Leloup R., Franke W. W. Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis. J Cell Biol. 1978 Nov;79(2 Pt 1):427–443. doi: 10.1083/jcb.79.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Easty G. C., Easty D. M., Monaghan P., Ormerod M. G., Neville A. M. Preparation and identification of human breast epithelial cells in culture. Int J Cancer. 1980 Nov 15;26(5):577–584. doi: 10.1002/ijc.2910260509. [DOI] [PubMed] [Google Scholar]
  12. Ellis R. A. Fine structure of the myoepithelium of the eccrine sweat glands of man. J Cell Biol. 1965 Dec;27(3):551–563. doi: 10.1083/jcb.27.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Emerman J. T., Enami J., Pitelka D. R., Nandi S. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4466–4470. doi: 10.1073/pnas.74.10.4466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Foidart J. M., Bere E. W., Jr, Yaar M., Rennard S. I., Gullino M., Martin G. R., Katz S. I. Distribution and immunoelectron microscopic localization of laminin, a noncollagenous basement membrane glycoprotein. Lab Invest. 1980 Mar;42(3):336–342. [PubMed] [Google Scholar]
  16. Foidart J. M., Berman J. J., Paglia L., Rennard S., Abe S., Perantoni A., Martin G. R. Synthesis of fibronectin, laminin, and several collagens by a liver-derived epithelial line. Lab Invest. 1980 May;42(5):525–532. [PubMed] [Google Scholar]
  17. Franke W. W., Schmid E., Freudenstein C., Appelhans B., Osborn M., Weber K., Keenan T. W. Intermediate-sized filaments of the prekeratin type in myoepithelial cells. J Cell Biol. 1980 Mar;84(3):633–654. doi: 10.1083/jcb.84.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Franke W. W., Schmid E., Osborn M., Weber K. Intermediate-sized filaments of human endothelial cells. J Cell Biol. 1979 Jun;81(3):570–580. doi: 10.1083/jcb.81.3.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Franke W. W., Schmid E., Vandekerckhove J., Weber K. Permanently proliferating rat vascular smooth muscle cell with maintained expression of smooth muscle characteristics, including actin of the vascular smooth muscle type. J Cell Biol. 1980 Dec;87(3 Pt 1):594–600. doi: 10.1083/jcb.87.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Franke W. W., Schmid E., Winter S., Osborn M., Weber K. Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res. 1979 Oct 1;123(1):25–46. doi: 10.1016/0014-4827(79)90418-x. [DOI] [PubMed] [Google Scholar]
  21. Franke W. W., Weber K., Osborn M., Schmid E., Freudenstein C. Antibody to prekeratin. Decoration of tonofilament like arrays in various cells of epithelial character. Exp Cell Res. 1978 Oct 15;116(2):429–445. doi: 10.1016/0014-4827(78)90466-4. [DOI] [PubMed] [Google Scholar]
  22. Greenburg G., Vlodavsky I., Foidart J. M., Gospodarowicz D. Conditioned medium from endothelial cell cultures can restore the normal phenotypic expression of vascular endothelium maintained in vitro in the absence of fibroblast growth factor. J Cell Physiol. 1980 May;103(2):333–347. doi: 10.1002/jcp.1041030219. [DOI] [PubMed] [Google Scholar]
  23. Hackett A. J., Smith H. S., Springer E. L., Owens R. B., Nelson-Rees W. A., Riggs J. L., Gardner M. B. Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. J Natl Cancer Inst. 1977 Jun;58(6):1795–1806. doi: 10.1093/jnci/58.6.1795. [DOI] [PubMed] [Google Scholar]
  24. Hallowes R. C., Rudland P. S., Hawkins R. A., Lewis D. J., Bennet D., Durbin H. Comparison of the effects of hormones on DNA synthesis in cell cultures of nonneoplastic and neoplastic mammary epithelium from rats. Cancer Res. 1977 Aug;37(8 Pt 1):2492–2504. [PubMed] [Google Scholar]
  25. Hynes R. O., Destree A. T. 10 nm filaments in normal and transformed cells. Cell. 1978 Jan;13(1):151–163. doi: 10.1016/0092-8674(78)90146-0. [DOI] [PubMed] [Google Scholar]
  26. Hynes R. O., Destree A. T. Relationships between fibronectin (LETS protein) and actin. Cell. 1978 Nov;15(3):875–886. doi: 10.1016/0092-8674(78)90272-6. [DOI] [PubMed] [Google Scholar]
  27. LEESON C. R. The histochemical identification of myoepithelium, with particular reference to the Harderian and exorbital lacrimal glands. Acta Anat (Basel) 1960;40:87–94. doi: 10.1159/000141573. [DOI] [PubMed] [Google Scholar]
  28. Lehto V. P., Virtanen I., Kurki P. Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts. Nature. 1978 Mar 9;272(5649):175–177. doi: 10.1038/272175a0. [DOI] [PubMed] [Google Scholar]
  29. Line S. E., Archer F. L. The postnatal development of myoepithelial cells in the rat submandibular gland. An immunohistochemical study. Virchows Arch B Cell Pathol. 1972;10(3):253–262. doi: 10.1007/BF02899735. [DOI] [PubMed] [Google Scholar]
  30. Liotta L. A., Wicha M. S., Foidart J. M., Rennard S. I., Garbisa S., Kidwell W. R. Hormonal requirements for basement membrane collagen deposition by cultured rat mammary epithelium. Lab Invest. 1979 Dec;41(6):511–518. [PubMed] [Google Scholar]
  31. Mautner V., Hynes R. O. Surface distribution of LETS protein in relation to the cytoskeleton of normal and transformed cells. J Cell Biol. 1977 Dec;75(3):743–768. doi: 10.1083/jcb.75.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Michalopoulos G., Pitot H. C. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp Cell Res. 1975 Aug;94(1):70–78. doi: 10.1016/0014-4827(75)90532-7. [DOI] [PubMed] [Google Scholar]
  33. Osborn M., Franke W., Weber K. Direct demonstration of the presence of two immunologically distinct intermediate-sized filament systems in the same cell by double immunofluorescence microscopy. Vimentin and cytokeratin fibers in cultured epithelial cells. Exp Cell Res. 1980 Jan;125(1):37–46. doi: 10.1016/0014-4827(80)90186-x. [DOI] [PubMed] [Google Scholar]
  34. Owen M. J., Auger J., Barber B. H., Edwards A. J., Walsh F. S., Crumpton M. J. Actin may be present on the lymphocyte surface. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4484–4488. doi: 10.1073/pnas.75.9.4484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ozzello L. Ultrastructure of the human mammary gland. Pathol Annu. 1971;6:1–59. [PubMed] [Google Scholar]
  36. Pulley L. T. Ultrastructural and histochemical demonstration of myoepithelium in the normal canine mammary gland. Am J Vet Res. 1973 Dec;34(12):1505–1512. [PubMed] [Google Scholar]
  37. Radnor C. J. Myoepithelial cell differentiation in rat mammary glands. J Anat. 1972 Apr;111(Pt 3):381–398. [PMC free article] [PubMed] [Google Scholar]
  38. Radnor C. J. Myoepithelium in the prelactating and lactating mammary glands of the rat. J Anat. 1972 Sep;112(Pt 3):337–353. [PMC free article] [PubMed] [Google Scholar]
  39. Redman R. S., Ball W. D. Differentiation of myoepithelial cells in the developing rat sublingual gland. Am J Anat. 1979 Dec;156(4):543–565. doi: 10.1002/aja.1001560408. [DOI] [PubMed] [Google Scholar]
  40. Redman R. S., Sweney L. R., McLaughlin S. T. Differentiation of myoepithelial cells in the developing rat parotid gland. Am J Anat. 1980 Jul;158(3):299–320. doi: 10.1002/aja.1001580306. [DOI] [PubMed] [Google Scholar]
  41. Rudland P. S., Hallowes R. C., Durbin H., Lewis D. Mitogenic activity of pituitary hormones on cell cultures of normal and carcinogen-induced tumor epithelium from rat mammary glands. J Cell Biol. 1977 Jun;73(3):561–577. doi: 10.1083/jcb.73.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schuppan D., Timpl R., Glanville R. W. Discontinuities in the triple helical sequence Gly-X-Y of basement membrane (type IV) collagen. FEBS Lett. 1980 Jun 30;115(2):297–300. doi: 10.1016/0014-5793(80)81191-4. [DOI] [PubMed] [Google Scholar]
  43. Shirasuna K., Sato M., Miyazaki T. A myoepithelial cell line established from a human pleomorphic adenoma arising in minor salivary gland. Cancer. 1980 Jan 15;45(2):297–305. doi: 10.1002/1097-0142(19800115)45:2<297::aid-cncr2820450217>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  44. Soloff M. S., Chakraborty J., Sadhukhan P., Senitzer D., Wieder M., Fernstrom M. A., Sweet P. Purification and characterization of mammary myoepithelial and secretory cells from the lactating rat. Endocrinology. 1980 Mar;106(3):887–897. doi: 10.1210/endo-106-3-887. [DOI] [PubMed] [Google Scholar]
  45. Stampfer M., Hallowes R. C., Hackett A. J. Growth of normal human mammary cells in culture. In Vitro. 1980 May;16(5):415–425. doi: 10.1007/BF02618365. [DOI] [PubMed] [Google Scholar]
  46. Stenman S., Vaheri A. Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med. 1978 Apr 1;147(4):1054–1064. doi: 10.1084/jem.147.4.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stirling J. W., Chandler J. A. The fine structure of the normal, resting terminal ductal-lobular unit of the female breast. Virchows Arch A Pathol Anat Histol. 1976 Dec 27;372(3):205–226. doi: 10.1007/BF00433280. [DOI] [PubMed] [Google Scholar]
  48. Sun T. T., Green H. Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation. J Biol Chem. 1978 Mar 25;253(6):2053–2060. [PubMed] [Google Scholar]
  49. Tannenbaum M., Weiss M., Marx A. J. Ultrastructure of the human mammary ductule. Cancer. 1969 Apr;23(4):958–978. doi: 10.1002/1097-0142(196904)23:4<958::aid-cncr2820230435>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  50. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  51. Warburton M. J., Head L. P., Rudland P. S. Induction of casein synthesis in a rat mammary tumour epithelial cell line by dimethyl sulphoxide [proceedings]. Biochem Soc Trans. 1979 Feb;7(1):115–116. doi: 10.1042/bst0070115. [DOI] [PubMed] [Google Scholar]
  52. Warburton M. J., Head L. P., Rudland P. S. Redistribution of fibronectin and cytoskeletal proteins during the differentiation of rat mammary tumor cells in vitro. Exp Cell Res. 1981 Mar;132(1):57–66. doi: 10.1016/0014-4827(81)90082-3. [DOI] [PubMed] [Google Scholar]
  53. Yang J., Richards J., Bowman P., Guzman R., Enami J., McCormick K., Hamamoto S., Pitelka D., Nandi S. Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3401–3405. doi: 10.1073/pnas.76.7.3401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yang N. S., Kirkland W., Jorgensen T., Furmanski P. Absence of fibronectin and presence of plasminogen activator in both normal and malignant human mammary epithelial cells in culture. J Cell Biol. 1980 Jan;84(1):120–130. doi: 10.1083/jcb.84.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zieve G. W., Heidemann S. R., McIntosh J. R. Isolation and partial characterization of a cage of filaments that surrounds the mammalian mitotic spindle. J Cell Biol. 1980 Oct;87(1):160–169. doi: 10.1083/jcb.87.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES