Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 May 1;93(2):298–305. doi: 10.1083/jcb.93.2.298

A model for the structure of chromatin in mammalian sperm

PMCID: PMC2112839  PMID: 7096440

Abstract

DNA in mammalian, and most vertebrate sperm, is packaged by protamines into a highly condensed, biochemically inert form of chromatin. A model is proposed for the structure of this DNA-protamine complex which describes the site and mode of protamine binding to DNA and postulates, for the first time, specific inter- and intraprotamine interactions essential for the organization of this highly specialized chromatin. In this model, the central polyarginine segment of protamine binds in the minor groove of DNA, crosslinking and neutralizing the phosphodiester backbone of DNA while the COOH- and NH2-terminal ends of protamine participate in the formation of inter- and intraprotamine hydrogen, hydrophobic, and disulfide bonds. Each protamine segment is of sufficient length to fill one turn of DNA, and adjacent protamines are locked in place around DNA by multiple disulfide bridges. Such an arrangement generates a neutral, insoluble chromatin complex, uses all protamine sulfhydryl groups for cross linking, conserves volume, and effectively renders the chromatin invulnerable to most external influences.

Full Text

The Full Text of this article is available as a PDF (1,003.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando T., Suzuki K. The amino acid sequence of the second component of clupeine. Biochim Biophys Acta. 1966 Jun 29;121(2):427–429. doi: 10.1016/0304-4165(66)90137-1. [DOI] [PubMed] [Google Scholar]
  2. Ando T., Suzuki K. The amino acid sequence of the third component of clupeine. Biochim Biophys Acta. 1967 Jun 27;140(2):375–377. doi: 10.1016/0005-2795(67)90481-3. [DOI] [PubMed] [Google Scholar]
  3. Ando T., Watanabe S. A new method for fractionation of protamines and the amino acid sequences of salmine and three components of iridine. Int J Protein Res. 1969;1(3):221–224. doi: 10.1111/j.1399-3011.1969.tb01646.x. [DOI] [PubMed] [Google Scholar]
  4. BRADBURY E. M., PRICE W. C., WILKINSON G. R. Polarized infrared studies of nucleoproteins. I. Nucleoprotamine. J Mol Biol. 1962 Jan;4:39–49. doi: 10.1016/s0022-2836(62)80115-6. [DOI] [PubMed] [Google Scholar]
  5. BRIL-PETERSEN E., WESTENBRINIK H. G. A STRUCTURAL BASIC PROTEIN AS A COUNTERPART OF DEOXYRIBONUCLEIC ACID IN MAMMALIAN SPERMATOZOA. Biochim Biophys Acta. 1963 Sep 17;76:152–154. [PubMed] [Google Scholar]
  6. Bak A. L., Zeuthen J., Crick F. H. Higher-order structure of human mitotic chromosomes. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1595–1599. doi: 10.1073/pnas.74.4.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Balhorn R., Gledhill B. L., Wyrobek A. J. Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry. 1977 Sep 6;16(18):4074–4080. doi: 10.1021/bi00637a021. [DOI] [PubMed] [Google Scholar]
  8. Bedford J. M., Calvin H., Cooper G. W. The maturation of spermatozoa in the human epididymis. J Reprod Fertil Suppl. 1973 Jul;18:199–213. [PubMed] [Google Scholar]
  9. Bellvé A. R., Anderson E., Hanley Bowdoin L. Synthesis and amino acid composition of basic proteins in mammalian sperm nuclei. Dev Biol. 1975 Dec;47(2):349–365. doi: 10.1016/0012-1606(75)90289-4. [DOI] [PubMed] [Google Scholar]
  10. Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. C., Mercola D. A., Vijayan M. Atomic positions in rhombohedral 2-zinc insulin crystals. Nature. 1971 Jun 25;231(5304):506–511. doi: 10.1038/231506a0. [DOI] [PubMed] [Google Scholar]
  11. Bols N. C., Boliska S. A., Rainville J. B., Kasinsky H. E. Nuclear basic protein changes during spermiogenesis in the longnose skate and the spiny dogfish. J Exp Zool. 1980 Jun;212(3):423–433. doi: 10.1002/jez.1402120315. [DOI] [PubMed] [Google Scholar]
  12. Bols N. C., Kasinsky H. E. On the diversity of sperm histones in the vertebrates: II. A cytochemical study of the basic protein transitions during spermiogenesis in the cartilaginous fish Hydrolagus colliei. J Exp Zool. 1976 Oct;198(1):109–113. doi: 10.1002/jez.1401980112. [DOI] [PubMed] [Google Scholar]
  13. Bouvier D. Chemical aspects of histone acetylation and replacement in mouse spermatids at different stages of maturation. Cytobiologie. 1977 Oct;15(3):420–437. [PubMed] [Google Scholar]
  14. Branson R. E., Grimes S. R., Jr, Yonuschot G., Irvin J. L. The histones of rat testis. Arch Biochem Biophys. 1975 Jun;168(2):403–412. doi: 10.1016/0003-9861(75)90269-6. [DOI] [PubMed] [Google Scholar]
  15. Bretzel G. Uber Thynnin, das Protamin des Thunfisches. Die Aminosäuresequenz von Thynnin Z1. XIII. Mitteilung: über die Struktur der Protamine in der Untersuchungsreihe von E. Waldschmidt-Leitz und Mitarbeitern. Hoppe Seylers Z Physiol Chem. 1973 Mar;354(3):312–320. [PubMed] [Google Scholar]
  16. Bretzel G. Uber Thynnin, das Protamin des Thunfisches. Die Sequenz der Komponente Y1. XII. Mitteilung über die Struktur der Protamine in der Untersuchungsreihe von E. Waldschmidt-Leitz und Mitarbeitern. Hoppe Seylers Z Physiol Chem. 1972 Aug;353(8):1362–1364. [PubMed] [Google Scholar]
  17. Brown J. R. Structural origins of mammalian albumin. Fed Proc. 1976 Aug;35(10):2141–2144. [PubMed] [Google Scholar]
  18. Calvin H. I., Bedford J. M. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl. 1971 May;13(Suppl):65–75. [PubMed] [Google Scholar]
  19. Calvin H. I. Comparative analysis of the nuclear basic proteins in rat, human, guinea pig, mouse and rabbit spermatozoa. Biochim Biophys Acta. 1976 Jun 15;434(2):377–389. doi: 10.1016/0005-2795(76)90229-4. [DOI] [PubMed] [Google Scholar]
  20. Castellani L., Chiara F., Cotelli F. Fine structure and cytochemistry of the morphogenesis of round-headed human sperm. Arch Androl. 1978 Sep;1(4):291–297. doi: 10.3109/01485017808988349. [DOI] [PubMed] [Google Scholar]
  21. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  22. Coelingh J. P., Monfoort C. H., Rozijn T. H., Leuven J. A., Schiphof R., Steyn-Parvé E. P., Braunitzer G., Schrank B., Ruhfus A. The complete amino acid sequence of the basic nuclear protein of bull spermatozoa. Biochim Biophys Acta. 1972 Nov 28;285(1):1–14. doi: 10.1016/0005-2795(72)90174-2. [DOI] [PubMed] [Google Scholar]
  23. Coelingh J. P., Rozijn T. H., Monfoort C. H. Isolation and partial characterization of a basic protein from bovine sperm heads. Biochim Biophys Acta. 1969;188(2):353–356. doi: 10.1016/0005-2795(69)90091-9. [DOI] [PubMed] [Google Scholar]
  24. De Santis P., Forni E., Rizzo R. Conformational analysis of DNA-basic polypeptide complexes: possible models of nucleoprotamines and nucleohistones. Biopolymers. 1974;13(2):313–326. doi: 10.1002/bip.1974.360130207. [DOI] [PubMed] [Google Scholar]
  25. Dooher G. B., Bennett D. Fine structural observations on the development of the sperm head in the mouse. Am J Anat. 1973 Mar;136(3):339–361. doi: 10.1002/aja.1001360307. [DOI] [PubMed] [Google Scholar]
  26. Evenson D. P., Witkin S. S., de Harven E., Bendich A. Ultrastructure of partially decondensed human spermatozoal chromatin. J Ultrastruct Res. 1978 May;63(2):178–187. doi: 10.1016/s0022-5320(78)80073-2. [DOI] [PubMed] [Google Scholar]
  27. FEUGHELMAN M., LANGRIDGE R., SEEDS W. E., STOKES A. R., WILSON H. R., HOOPER C. W., WILKINS M. H., BARCLAY R. K., HAMILTON L. D. Molecular structure of deoxyribose nucleic acid and nucleoprotein. Nature. 1955 May 14;175(4463):834–838. [PubMed] [Google Scholar]
  28. Felsenfeld G. Chromatin. Nature. 1978 Jan 12;271(5641):115–122. doi: 10.1038/271115a0. [DOI] [PubMed] [Google Scholar]
  29. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Fox J., Tu A. T. Conformational analysis of a snake neurotoxin by prediction from sequence, circular dichroism, and raman spectroscopy. Arch Biochem Biophys. 1979 Apr 1;193(2):407–414. doi: 10.1016/0003-9861(79)90047-x. [DOI] [PubMed] [Google Scholar]
  31. Gaastra W., Lukkes-Hofstra J., Kolk A. H. Partial covalent structure of two basic chromosomal proteins from human spermatozoa. Biochem Genet. 1978 Jun;16(5-6):525–529. doi: 10.1007/BF00484216. [DOI] [PubMed] [Google Scholar]
  32. Goldberg R. B., Geremia R., Bruce W. R. Histone synthesis and replacement during spermatogenesis in the mouse. Differentiation. 1977;7(3):167–180. doi: 10.1111/j.1432-0436.1977.tb01508.x. [DOI] [PubMed] [Google Scholar]
  33. Hart R. G. A model of the chromosome. Adv Biol Med Phys. 1968;12:139–161. doi: 10.1016/b978-1-4831-9928-3.50007-2. [DOI] [PubMed] [Google Scholar]
  34. Herskovits T. T., Brahms J. Structural investigations on DNA-protamine complexes. Biopolymers. 1976 Apr;15(4):687–706. doi: 10.1002/bip.1976.360150408. [DOI] [PubMed] [Google Scholar]
  35. Honda B. M., Baillie D. L., Candido E. P. The subunit structure of chromatin: characteristics of nucleohistone and nucleoprotamine from developing trout testis. FEBS Lett. 1974 Nov 1;48(1):156–159. doi: 10.1016/0014-5793(74)81086-0. [DOI] [PubMed] [Google Scholar]
  36. Ingles C. J., Dixon G. H. Phosphorylation of protamine during spermatogenesis in trout testis. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1011–1018. doi: 10.1073/pnas.58.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Inoue S., Fuke M. An electron microscope study of deoxyribonucleoprotamines. Biochim Biophys Acta. 1970 Apr 15;204(2):296–303. doi: 10.1016/0005-2787(70)90147-4. [DOI] [PubMed] [Google Scholar]
  38. Iwai K., Nakahara C., Ando T. Studies on protamines. XV. The complete amino acid sequence of the Z component of clupeine. Application of N leads to O acyl rearrangement and selective hydrolysis in sequence determination. J Biochem. 1971 Mar;69(3):493–509. [PubMed] [Google Scholar]
  39. Kawashima S., Ando T. Deoxyribonucleoproteins of herring sperm nuclei. I. Chemical composition. J Biochem. 1978 Apr;83(4):1117–1123. doi: 10.1093/oxfordjournals.jbchem.a132001. [DOI] [PubMed] [Google Scholar]
  40. Keichline L. D., Wassarman P. M. Structure of chromatin in sea urchin embryos, sperm, and adult somatic cells. Biochemistry. 1979 Jan 9;18(1):214–219. doi: 10.1021/bi00568a033. [DOI] [PubMed] [Google Scholar]
  41. Kierszenbaum A. L., Tres L. L. Structural and transcriptional features of the mouse spermatid genome. J Cell Biol. 1975 May;65(2):258–270. doi: 10.1083/jcb.65.2.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Kierszenbaum A. L., Tres L. L. The packaging unit: a basic structural feature for the condensation of late cricket spermatid nuclei. J Cell Sci. 1978 Oct;33:265–283. doi: 10.1242/jcs.33.1.265. [DOI] [PubMed] [Google Scholar]
  43. Kimball M. R., Sato A., Richardson J. S., Rosen L. S., Low B. W. Molecular conformation of erabutoxin b; atomic coordinates at 2.5 A resolution. Biochem Biophys Res Commun. 1979 Jun 13;88(3):950–959. doi: 10.1016/0006-291x(79)91500-6. [DOI] [PubMed] [Google Scholar]
  44. Kistler W. S., Geroch M. E. An unusual pattern of lysine rich histone components is associated with spermatogenesis in rat testis. Biochem Biophys Res Commun. 1975 Mar 17;63(2):378–384. doi: 10.1016/0006-291x(75)90699-3. [DOI] [PubMed] [Google Scholar]
  45. Kistler W. S., Geroch M. E., Williams-Ashman H. G. Specific basic proteins from mammalian testes. Isolation and properties of small basic proteins from rat testes and epididymal spermatozoa. J Biol Chem. 1973 Jul 10;248(13):4532–4543. [PubMed] [Google Scholar]
  46. Kistler W. S., Keim P. S., Heinrikson R. L. Partial structural analysis of the basic chromosomal protein of rat spermatozoa. Biochim Biophys Acta. 1976 Apr 14;427(2):752–757. doi: 10.1016/0005-2795(76)90220-8. [DOI] [PubMed] [Google Scholar]
  47. Koehler J. K. Fine structure observations in frozen-etched bovine spermatozoa. J Ultrastruct Res. 1966 Oct;16(3):359–375. doi: 10.1016/s0022-5320(66)80068-0. [DOI] [PubMed] [Google Scholar]
  48. Kumaroo K. K., Jahnke G., Irvin J. L. Changes in basic chromosomal proteins during spermatogenesis in the mature rat. Arch Biochem Biophys. 1975 Jun;168(2):413–424. doi: 10.1016/0003-9861(75)90270-2. [DOI] [PubMed] [Google Scholar]
  49. Lam D. M., Bruce W. R. The biosynthesis of protamine during spermatogenesis of the mouse: extraction, partial characterization, and site of synthesis. J Cell Physiol. 1971 Aug;78(1):13–24. doi: 10.1002/jcp.1040780104. [DOI] [PubMed] [Google Scholar]
  50. Lilley D. M., Pardon J. F. Structure and function of chromatin. Annu Rev Genet. 1979;13:197–233. doi: 10.1146/annurev.ge.13.120179.001213. [DOI] [PubMed] [Google Scholar]
  51. Loir M., Lanneau M. An electrophoretic analysis of the basic nuclear proteins of ram spermatids. Exp Cell Res. 1975 May;92(2):509–512. doi: 10.1016/0014-4827(75)90409-7. [DOI] [PubMed] [Google Scholar]
  52. Loir M., Lanneau M. Transformation of ram spermatid chromatin. Exp Cell Res. 1978 Sep;115(2):231–243. doi: 10.1016/0014-4827(78)90277-x. [DOI] [PubMed] [Google Scholar]
  53. Lung B. Ultrastructure and chromatin disaggregation of human sperm head with thioglycolate treatment. J Cell Biol. 1972 Jan;52(1):179–186. doi: 10.1083/jcb.52.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Lung B. Whole-mount electron microscopy of chromatin and membranes in bull and human sperm heads. J Ultrastruct Res. 1968 Mar;22(5):485–493. doi: 10.1016/s0022-5320(68)90036-1. [DOI] [PubMed] [Google Scholar]
  55. Marsden M. P., Laemmli U. K. Metaphase chromosome structure: evidence for a radial loop model. Cell. 1979 Aug;17(4):849–858. doi: 10.1016/0092-8674(79)90325-8. [DOI] [PubMed] [Google Scholar]
  56. Marushige K., Ling V., Dixon G. H. Phosphorylation of chromosomal basic proteins in maturing trout testis. J Biol Chem. 1969 Nov 10;244(21):5953–5958. [PubMed] [Google Scholar]
  57. Marushige Y., Marushige K. Haemodynamic and coronary vascular responses after beta-adrenoceptor blockade in the anaesthetised dog: a comparison of tolamolol with practolol and propranolol. Biochim Biophys Acta. 1974 Apr 10;340(4):498–508. [PubMed] [Google Scholar]
  58. Marushige Y., Marushige K. Phosphorylation of sperm histone during spermiogenesis in mammals. Biochim Biophys Acta. 1978 May 23;518(3):440–449. doi: 10.1016/0005-2787(78)90162-4. [DOI] [PubMed] [Google Scholar]
  59. Marushige Y., Marushige K. Transformation of sperm histone during formation and maturation of rat spermatozoa. J Biol Chem. 1975 Jan 10;250(1):39–45. [PubMed] [Google Scholar]
  60. McGhee J. D., Felsenfeld G. Nucleosome structure. Annu Rev Biochem. 1980;49:1115–1156. doi: 10.1146/annurev.bi.49.070180.005343. [DOI] [PubMed] [Google Scholar]
  61. McGhee J. D., Felsenfeld G. Reaction of nucleosome DNA with dimethyl sulfate. Proc Natl Acad Sci U S A. 1979 May;76(5):2133–2137. doi: 10.1073/pnas.76.5.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. McMaster-Kaye R., Kaye J. S. Basic protein changes during the final stages of sperm maturation in the house cricket. Exp Cell Res. 1976 Feb;97(2):378–386. doi: 10.1016/0014-4827(76)90629-7. [DOI] [PubMed] [Google Scholar]
  63. Mirzabekov A. D., San'ko D. F., Kolchinsky A. M., Melnikova A. F. Protein arrangement in the DNA grooves in chromatin and nucleoprotamine in vitro and in vivo revealed by methylation. Eur J Biochem. 1977 May 16;75(2):379–389. doi: 10.1111/j.1432-1033.1977.tb11539.x. [DOI] [PubMed] [Google Scholar]
  64. Monfoort C. H., Schiphof R., Roxijn T. H., Steyn-Parvè E. P. Amino acid composition and carboxyl-terminal structure of some basic chromosomal proteins of mammalian spermatozoa. Biochim Biophys Acta. 1973 Sep 21;322(1):173–177. doi: 10.1016/0005-2795(73)90189-x. [DOI] [PubMed] [Google Scholar]
  65. Murray K., Bradbury E. M., Crane-Robinson C., Stephens R. M., Haydon A. J., Peacocke A. R. The dissociation of chicken erythrocyte deoxyribonuleoprotein and some properties of its partial nucleoproteins. Biochem J. 1970 Dec;120(4):859–871. doi: 10.1042/bj1200859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. O'Brien D. A., Bellvé A. R. Protein constituents of the mouse spermatozoon. II. Temporal synthesis during spermatogenesis. Dev Biol. 1980 Mar 15;75(2):405–418. doi: 10.1016/0012-1606(80)90172-4. [DOI] [PubMed] [Google Scholar]
  67. Ohlenbusch H. H., Olivera B. M., Tuan D., Davidson N. Selective dissociation of histones from calf thymus nucleoprotein. J Mol Biol. 1967 Apr 28;25(2):299–315. doi: 10.1016/0022-2836(67)90143-x. [DOI] [PubMed] [Google Scholar]
  68. Olins D. E. Interaction of lysine-rich histones and DNA. J Mol Biol. 1969 Aug 14;43(3):439–460. doi: 10.1016/0022-2836(69)90351-9. [DOI] [PubMed] [Google Scholar]
  69. Platz R. D., Grimes S. R., Meistrich M. L., Hnilica L. S. Changes in nuclear proteins of rat testis cells separated by velocity sedimentation. J Biol Chem. 1975 Aug 10;250(15):5791–5800. [PubMed] [Google Scholar]
  70. Puwaravutipanich T., Panyim S. The nuclear basic proteins of human testes and ejaculated spermatozoa. Exp Cell Res. 1975 Jan;90(1):153–158. doi: 10.1016/0014-4827(75)90368-7. [DOI] [PubMed] [Google Scholar]
  71. ROOSEN-RUNGE E. C. The process of spermatogenesis in mammals. Biol Rev Camb Philos Soc. 1962 Aug;37:343–377. doi: 10.1111/j.1469-185x.1962.tb01616.x. [DOI] [PubMed] [Google Scholar]
  72. Rocha E., Cornudella L. Differential nuclease action on nuclei and chromatin from developing germ cells of the echinoderm Holothuria tubulosa. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1073–1081. doi: 10.1016/0006-291x(76)90305-3. [DOI] [PubMed] [Google Scholar]
  73. Saowaros W., Panyim S. The formation of disulfide bonds in human protamines during sperm maturation. Experientia. 1979 Feb 15;35(2):191–192. doi: 10.1007/BF01920608. [DOI] [PubMed] [Google Scholar]
  74. Shih T. Y., Bonner J. Template properties of DNA-polypeptide complexes. J Mol Biol. 1970 Jun 14;50(2):333–344. doi: 10.1016/0022-2836(70)90196-8. [DOI] [PubMed] [Google Scholar]
  75. Shih T. Y., Bonner J. Thermal denaturation and template properties of DNA complexes with purified histone fractions. J Mol Biol. 1970 Mar;48(3):469–487. doi: 10.1016/0022-2836(70)90059-8. [DOI] [PubMed] [Google Scholar]
  76. Shires A., Carpenter M. P., Chalkley R. New histones found in mature mammalian testes. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2714–2718. doi: 10.1073/pnas.72.7.2714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Sipski M. L., Wagner T. E. The total structure and organization of chromosomal fibers in eutherian sperm nuclei. Biol Reprod. 1977 May;16(4):428–440. doi: 10.1095/biolreprod16.4.428. [DOI] [PubMed] [Google Scholar]
  78. Sobell H. M., Jain S. C. Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. J Mol Biol. 1972 Jul 14;68(1):21–34. doi: 10.1016/0022-2836(72)90259-8. [DOI] [PubMed] [Google Scholar]
  79. Sobell H. M. The stereochemistry of actinomycin binding to DNA and its implications in molecular biology. Prog Nucleic Acid Res Mol Biol. 1973;13:153–190. doi: 10.1016/s0079-6603(08)60103-8. [DOI] [PubMed] [Google Scholar]
  80. Suau P., Subirana J. A. X-ray diffraction studies of nucleoprotamine structure. J Mol Biol. 1977 Dec 25;117(4):909–926. doi: 10.1016/s0022-2836(77)80005-3. [DOI] [PubMed] [Google Scholar]
  81. Suwalsky M., Traub W. A comparative x-ray study of a nucleoprotamine and DNA complexes with polylysine and polyarginine. Biopolymers. 1972;11(11):2223–2231. doi: 10.1002/bip.1972.360111103. [DOI] [PubMed] [Google Scholar]
  82. WILKINS M. H. Physical studies of the molecular structure of deoxyribose nucleic acid and nucleoprotein. Cold Spring Harb Symp Quant Biol. 1956;21:75–90. doi: 10.1101/sqb.1956.021.01.007. [DOI] [PubMed] [Google Scholar]
  83. Warrant R. W., Kim S. H. alpha-Helix-double helix interaction shown in the structure of a protamine-transfer RNA complex and a nucleoprotamine model. Nature. 1978 Jan 12;271(5641):130–135. doi: 10.1038/271130a0. [DOI] [PubMed] [Google Scholar]
  84. Wyrobek A. J., Meistrich M. L., Furrer R., Bruce W. R. Physical characteristics of mouse sperm nuclei. Biophys J. 1976 Jul;16(7):811–825. doi: 10.1016/S0006-3495(76)85730-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Yu S. S., Li H. J. Helix-coil transition and conformational studies of protamine-DNA complexes. Biopolymers. 1973 Dec;12(12):2777–2788. doi: 10.1002/bip.1973.360121211. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES