Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 May 1;93(2):374–382. doi: 10.1083/jcb.93.2.374

Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length

TS Hays, D Wise, ED Salmon
PMCID: PMC2112846  PMID: 7096444

Abstract

We are investigating the relation between the force pulling a kinetochore poleward and the length of the corresponding kinetochore fiber. It was recognized by Ostergren in 1950 (Hereditas 36:1-19) that the metaphase position of a chromosome could be achieved by a balance of traction forces were proportional to the distance from kinetochore to pole. For the typical chromosome (i.e., a meiotic bivalent or mitotic chromosome) with a single kinetochore fiber extending to each pole, the resultant force (RF) would equal zero when the chromosome lay at the midpoint between the two poles. For special chromosomes that have unequal numbers of kinetochore fibers extending towards opposite poles. For special chromosomes that have unequal numbers of kinetochore fibers extending towards opposite poles. For special chromosomes that have unequal numbers of kinetochore fibers extending towards opposite poles, Ostergren’s proposal suggests that RF = 0 when the chromosome is shifted closer to the pole toward which the greater number of kinetochore fibers are pulling. We have measured the force-length relationship in living spindles by analyzing the metaphase positions of experimentally generated multivalent chromosomes having three or four kinetochore fibers. Multivalent chromosomes of varied configurations were generated by γ-irradiation of nymphs of the grasshopper melanoplus differentialis, and their behavior was analyzed in living first meiotic spermocytes. The lengths of kinetochore fibers were determined from time-lapse photographs by measuring the kinetochore-to-pole distances for fully congressed chromosomes just before the onset of anaphase. In our analysis, force (F) along a single kinetochore fiber is expressed by: F = kL(exp), where k is a length-independent proportionality constant, L represents the kinetochore fiber length, and exp is an unknown exponent. The RF on a chromosome is then given by: RF = σk(i)L(i)(exp), where kinetochore fiber lengths in opposite half- spindles are given opposite sign. If forces on a metaphase chromosome are at equilibrium (RF = 0), then for asymmetrical orientations of multivalents we can measure the individual kinetochore fiber lengths (L(i)) and solve for the exponent that yields a resultant force of zero. The value of the exponent relates how the magnitude of force along a kinetochore fiber varies with its length. For six trivalents and one naturally occurring quadrivalent we calculated an average value of exp = 1.06 +/- 0.18. This result is consistent with Ostergren’s hypothesis and indicates that the magnitude of poleward traction force along a kinetochore fiber is directly proportional to the length of the fiber. Our finding suggests that the balance of forces along a kinetochore fiber may be a major factor regulating the extent of kinetochore microtubule assembly.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAUER H., DIETZ R., ROEBBELEN C. [Spermatocyte division of Tipulae. III. Movement behavior of chromosomes in translocation heterozygotes of Tipula oleracea]. Chromosoma. 1961;12:116–189. doi: 10.1007/BF00328918. [DOI] [PubMed] [Google Scholar]
  2. Bajer A. S. Interaction of microtubules and the mechanism of chromosome movement (zipper hypothesis). 1. General principle. Cytobios. 1973 Nov;8(31):139–160. [PubMed] [Google Scholar]
  3. Begg D. A., Ellis G. W. Micromanipulation studies of chromosome movement. I. Chromosome-spindle attachment and the mechanical properties of chromosomal spindle fibers. J Cell Biol. 1979 Aug;82(2):528–541. doi: 10.1083/jcb.82.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Begg D. A., Ellis G. W. Micromanipulation studies of chromosome movement. II. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle. J Cell Biol. 1979 Aug;82(2):542–554. doi: 10.1083/jcb.82.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bergen L. G., Borisy G. G. Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J Cell Biol. 1980 Jan;84(1):141–150. doi: 10.1083/jcb.84.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brinkley B. R., Cartwright J., Jr Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts. J Cell Biol. 1971 Aug;50(2):416–431. doi: 10.1083/jcb.50.2.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DIETZ R. Multiple Geschlechtschromosomen bei den cypriden Ostracoden, ihre Evolution und ihr Teilungsverhalten. Chromosoma. 1958;9(5):359–440. [PubMed] [Google Scholar]
  8. Dietz R. Bau ud Fnktion des Spindelapparats. Naturwissenschaften. 1969 May;56(5):237–248. doi: 10.1007/BF00633917. [DOI] [PubMed] [Google Scholar]
  9. Dietz R. Die Assembly-Hypothese der Chromosomenbewegung und die Veränderungen der Spindellänge während der Anaphase I in Spermatocyten von Pales ferruginea (Tipulidae, Diptera. Chromosoma. 1972;38(1):11–76. doi: 10.1007/BF00319955. [DOI] [PubMed] [Google Scholar]
  10. Douglas L. T. Meiosis V: Matric and path coefficient solutions of tri- and quadrivalents. Genetica. 1968;39(3):456–496. doi: 10.1007/BF02324481. [DOI] [PubMed] [Google Scholar]
  11. FORER A. LOCAL REDUCTION OF SPINDLE FIBER BIREFRINGENCE IN LIVING NEPHROTOMA SUTURALIS (LOEW) SPERMATOCYTES INDUCED BY ULTRAVIOLET MICROBEAM IRRADIATION. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL117. doi: 10.1083/jcb.25.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Inoué S., Ritter H., Jr Dynamics of mitotic spindle organization and function. Soc Gen Physiol Ser. 1975;30:3–30. [PubMed] [Google Scholar]
  13. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  14. LaFountain J. R., Jr Birefringence and fine structure of spindles in spermatocytes of Nephrotoma suturalis at metaphase of first meiotic division. J Ultrastruct Res. 1974 Feb;46(2):268–278. doi: 10.1016/s0022-5320(74)80061-4. [DOI] [PubMed] [Google Scholar]
  15. Lin H. P., Ault J. G., Church K. Meiosis in Drosophila melanogaster. I. Chromosome identification and kinetochore microtubule numbers during the first and second meiotic divisions in males. Chromosoma. 1981;83(4):507–521. doi: 10.1007/BF00328276. [DOI] [PubMed] [Google Scholar]
  16. Luby K. J., Porter K. R. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). I. Energy requirements. Cell. 1980 Aug;21(1):13–23. doi: 10.1016/0092-8674(80)90110-5. [DOI] [PubMed] [Google Scholar]
  17. Luykx P. Cellular mechanisms of chromosome distribution. Int Rev Cytol. 1970;(Suppl):1–173. [PubMed] [Google Scholar]
  18. Margolis R. L., Wilson L., Keifer B. I. Mitotic mechanism based on intrinsic microtubule behaviour. Nature. 1978 Mar 30;272(5652):450–452. doi: 10.1038/272450a0. [DOI] [PubMed] [Google Scholar]
  19. Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
  20. McNeill P. A., Berns M. W. Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells. J Cell Biol. 1981 Mar;88(3):543–553. doi: 10.1083/jcb.88.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moens P. B. Kinetochore microtubule numbers of different sized chromosomes. J Cell Biol. 1979 Dec;83(3):556–561. doi: 10.1083/jcb.83.3.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. NICKLAS R. B. Recurrent pole-to-pole movements of the sex chromosome during prometaphase I in Melanoplus differentialis spermatocytes. Chromosoma. 1961;12:97–115. doi: 10.1007/BF00328917. [DOI] [PubMed] [Google Scholar]
  23. Nicklas R. B., Brinkley B. R., Pepper D. A., Kubai D. F., Rickards G. K. Electron microscopy of spermatocytes previously studied in life: methods and some observations on micromanipulated chromosomes. J Cell Sci. 1979 Feb;35:87–104. doi: 10.1242/jcs.35.1.87. [DOI] [PubMed] [Google Scholar]
  24. Nicklas R. B., Koch C. A. Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J Cell Biol. 1969 Oct;43(1):40–50. doi: 10.1083/jcb.43.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rieder C. L. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma. 1981;84(1):145–158. doi: 10.1007/BF00293368. [DOI] [PubMed] [Google Scholar]
  26. Salmon E. D., Begg D. A. Functional implications of cold-stable microtubules in kinetochore fibers of insect spermatocytes during anaphase. J Cell Biol. 1980 Jun;85(3):853–865. doi: 10.1083/jcb.85.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Salmon E. D. Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement. Ann N Y Acad Sci. 1975 Jun 30;253:383–406. doi: 10.1111/j.1749-6632.1975.tb19216.x. [DOI] [PubMed] [Google Scholar]
  28. Summers K., Kirschner M. W. Characteristics of the polar assembly and disassembly of microtubules observed in vitro by darkfield light microscopy. J Cell Biol. 1979 Oct;83(1):205–217. doi: 10.1083/jcb.83.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Virkki N. Sex chromosomes and karyotypes of the Alticidae (Coleoptera). Hereditas. 1970;64(2):267–282. doi: 10.1111/j.1601-5223.1970.tb02300.x. [DOI] [PubMed] [Google Scholar]
  30. White M. J. Sex chromosomes and meiotic mechanisms in some African and Australian mantids. Chromosoma. 1965 May 26;16(5):521–547. doi: 10.1007/BF00326972. [DOI] [PubMed] [Google Scholar]
  31. Witt P. L., Ris H., Borisy G. G. Structure of kinetochore fibers: microtubule continuity and inter-microtubule bridges. Chromosoma. 1981;83(4):523–540. doi: 10.1007/BF00328277. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES