Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 May 1;93(2):432–441. doi: 10.1083/jcb.93.2.432

Synthesis and mobilization of flagellar glycoproteins during regeneration in Euglena

PMCID: PMC2112849  PMID: 6807997

Abstract

Flagellar glycoprotein synthesis and mobilization of flagellar glycoprotein pools have been followed during flagellar regeneration in Euglena. The glycosylation inhibitor tunicamycin has little effect on either regeneration kinetics or the complement of flagellar peptides as seen in SDS acrylamide gels, but tunicamycin totally inhibits incorporation of exogenously supplied [14C]xylose into flagellar glycoproteins. Moreover, deflagellated cells pulsed with tunicamycin for 0 min or more, regenerated for 180 min, and then redeflagellated are completely or partially inhibited from undergoing a second regeneration even when tunicamycin is no longer present. These facts are interpreted as indicating that Euglena retains sufficient glycoprotein pool for one complete flagellar assembly. Some of this pool is present on the cell surface since [125I]-labeled surface peptides can be chased into the regenerating flagellum. Glycosylation may also be taking place in the flagellum directly because [14C]xylose has been found in three flagellar fractions: glycoprotein and two others, which are lipophilic and have properties similar to those described for lipid-carrier glycoprotein intermediates in other systems. Pulse-chase experiments also suggest a precursor-product relationship between the presumptive lipid carriers and flagellar glycoproteins. From these results a model is postulated in which Euglena is visualized as retaining sufficient pool of glycoprotein for one complete flagellar regeneration, but the pool is normally supplemented by active xylosylation in situ during regeneration.

Full Text

The Full Text of this article is available as a PDF (1,015.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beevers L., Mense R. M. Glycoprotein Biosynthesis in Cotyledons of Pisum sativum L: Involvement of Lipid-linked Intermediates. Plant Physiol. 1977 Nov;60(5):703–708. doi: 10.1104/pp.60.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behrens N. H., Tábora E. Dolichol intermediates in the glycosylation of proteins. Methods Enzymol. 1978;50:402–435. doi: 10.1016/0076-6879(78)50047-5. [DOI] [PubMed] [Google Scholar]
  3. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  4. Bouck G. B., Rogalski A., Valaitis A. Surface organization and composition of Euglena. II. Flagellar mastigonemes. J Cell Biol. 1978 Jun;77(3):805–826. doi: 10.1083/jcb.77.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bouck G. B. The structure, origin, isolation, and composition of the tubular mastigonemes of the Ochromas flagellum. J Cell Biol. 1971 Aug;50(2):362–384. doi: 10.1083/jcb.50.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Browder S. K., Beevers L. Incorporation of [C]Glucosamine and [C]Mannose into Glycolipids and Glycoproteins in Cotyledons of Pisum sativum L. Plant Physiol. 1980 May;65(5):924–930. doi: 10.1104/pp.65.5.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bélanger L., Fleischer B., Fleischer S., Guillouzo A., Lemonnier M., Chiu J. F. Subcellular distribution and molecular heterogeneity of alpha 1-fetoprotein in newborn rat liver. Biochemistry. 1979 May 15;18(10):1962–1968. doi: 10.1021/bi00577a018. [DOI] [PubMed] [Google Scholar]
  8. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  9. Hofmann C., Bouck G. B. Immunological and structural evidence for patterned intussusceptive surface growth in a unicellular organism. A postulated role for submembranous proteins and microtubules. J Cell Biol. 1976 Jun;69(3):693–715. doi: 10.1083/jcb.69.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  11. Jamieson J. C. Studies on the site of addition of sialic acid and glucosamine to rat alpha 1-acid glycoprotein. Can J Biochem. 1977 Apr;55(4):408–414. doi: 10.1139/o77-057. [DOI] [PubMed] [Google Scholar]
  12. Keenan R. W., Rice N. The lack of effect of tunicamycin on cilia regeneration in Tetrahymena pyriformis. Biochem Biophys Res Commun. 1980 Jun 16;94(3):955–959. doi: 10.1016/0006-291x(80)91327-3. [DOI] [PubMed] [Google Scholar]
  13. Kuo S. C., Lampen J. O. Tunicamycin--an inhibitor of yeast glycoprotein synthesis. Biochem Biophys Res Commun. 1974 May 7;58(1):287–295. doi: 10.1016/0006-291x(74)90925-5. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lane L. C. A simple method for stabilizing protein-sulfhydryl groups during SDS-gel electrophoresis. Anal Biochem. 1978 Jun 1;86(2):655–664. doi: 10.1016/0003-2697(78)90792-3. [DOI] [PubMed] [Google Scholar]
  16. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  17. Lucas J. J., Waechter C. J. Polyisoprenoid glycolipids involved in glycoprotein biosynthesis. Mol Cell Biochem. 1976 Apr 28;11(2):67–78. doi: 10.1007/BF01792788. [DOI] [PubMed] [Google Scholar]
  18. Mahoney W. C., Duksin D. Biological activities of the two major components of tunicamycin. J Biol Chem. 1979 Jul 25;254(14):6572–6576. [PubMed] [Google Scholar]
  19. Merritt W. D., Morre D. J., Franke W. W., Keenan T. W. Glycosyltransferases with endogenous acceptor activity in plasma membranes isolated from rat liver. Biochim Biophys Acta. 1977 May 26;497(3):820–824. doi: 10.1016/0304-4165(77)90305-1. [DOI] [PubMed] [Google Scholar]
  20. Parodi A. J., Leloir L. F. The role of lipid intermediates in the glycosylation of proteins in the eucaryotic cell. Biochim Biophys Acta. 1979 Apr 23;559(1):1–37. doi: 10.1016/0304-4157(79)90006-6. [DOI] [PubMed] [Google Scholar]
  21. Parodi A. J., Martin-Barrientos J. Glycosylation of endogenous proteins through dolichol derivatives in reticulocyte plasma membranes. Biochim Biophys Acta. 1977 Nov 7;500(1):80–88. doi: 10.1016/0304-4165(77)90048-4. [DOI] [PubMed] [Google Scholar]
  22. Rogalski A. A., Bouck G. B. Characterization and localization of a flagellar-specific membrane glycoprotein in Euglena. J Cell Biol. 1980 Aug;86(2):424–435. doi: 10.1083/jcb.86.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rosenbaum J. L., Child F. M. Flagellar regeneration in protozoan flagellates. J Cell Biol. 1967 Jul;34(1):345–364. doi: 10.1083/jcb.34.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Speake B. K., White D. A. The formation of lipid-linked sugars as intermediates in glycoprotein synthesis in rabbit mammary gland. Biochem J. 1978 Feb 15;170(2):273–283. doi: 10.1042/bj1700273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Waechter C. J., Lucas J. J., Lennarz W. J. Evidence for xylosyl lipids as intermediates in xylosyl transfers in hen oviduct membranes. Biochem Biophys Res Commun. 1974 Jan 23;56(2):343–350. doi: 10.1016/0006-291x(74)90848-1. [DOI] [PubMed] [Google Scholar]
  26. Yasuda Y., Takahashi N., Murachi T. The composition and structure of carbohydrate moiety of stem bromelain. Biochemistry. 1970 Jan 6;9(1):25–32. doi: 10.1021/bi00803a004. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES