Abstract
One of the most spectacular motions is the generation of the acrosomal process in the limulus sperm. On contact with the egg, the sperm generates a 60-mum-long process that literally drills its way through the jelly surrounding the egg. This irresversible reaction takes only a few seconds. We suggested earlier that this motion is driven by a change in twist of the actin filaments comprising the acrosomal process. In this paper we analyze the so-called false discharge, a reversible reaction, in which the acrosomal filament bundle extends laterally from the base of the sperm and not anteriorly from the apex. Unlike the true discharge, which is straight, the false discharge is helical. Before extension, the filament bundle is coiled about the base of the sperm. In the coil, the bundle is not smoothly bent but consists of arms (straight segments) and elbows (corners) so that the coil looks like a 14-sided polygon. The extension of the false discharge works as follows: starting at the base of the bundle, the filaments change their twist which concomitantly changes the orientations of the elbows relative to each other; that is, in the coil, the elbows all like in a common plane, but after the change in twist, the plane of each elbow is rotated to be perpendicular to that of its neighbors. This change transforms the bundle from a compact coil into an extended left- handed helix. Because the basal end of the bundle is unconstrained, the extension is lateral. The true discharge works the same way but starts at the apical end of the bundle. The apical end, however, is constrained by its passage through the nuclear canal, which directs the extention anteriorly. Unlike the false discharge, during the true discharge the elbows are melted out, making the reaction irreversible. This study shows that rapid movement can be regenerated by actin without myosin and gives us insight into the molecular mechanism.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Begg D. A., Rodewald R., Rebhun L. I. The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane-associated filaments. J Cell Biol. 1978 Dec;79(3):846–852. doi: 10.1083/jcb.79.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeRosier D. J., Moore P. B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J Mol Biol. 1970 Sep 14;52(2):355–369. doi: 10.1016/0022-2836(70)90036-7. [DOI] [PubMed] [Google Scholar]
- DeRosier D., Mandelkow E., Silliman A. Structure of actin-containing filaments from two types of non-muscle cells. J Mol Biol. 1977 Jul 15;113(4):679–695. doi: 10.1016/0022-2836(77)90230-3. [DOI] [PubMed] [Google Scholar]
- DeRosier D., Tilney L., Flicker P. A change in the twist of the actin-containing filaments occurs during the extension of the acrosomal process in Limulus sperm. J Mol Biol. 1980 Mar 15;137(4):375–389. doi: 10.1016/0022-2836(80)90163-1. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perutz M. F. Hemoglobin structure and respiratory transport. Sci Am. 1978 Dec;239(6):92–125. doi: 10.1038/scientificamerican1278-92. [DOI] [PubMed] [Google Scholar]
- Salmon E. D., DeRosier D. A surveying optical diffractometer. J Microsc. 1981 Sep;123(Pt 3):239–247. doi: 10.1111/j.1365-2818.1981.tb02468.x. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Amos L. A. Structure of actin filament bundles from microvilli of sea urchin eggs. J Mol Biol. 1979 Apr 5;129(2):319–331. doi: 10.1016/0022-2836(79)90285-7. [DOI] [PubMed] [Google Scholar]
- Tilney L. G. Actin filaments in the acrosomal reaction of Limulus sperm. Motion generated by alterations in the packing of the filaments. J Cell Biol. 1975 Feb;64(2):289–310. doi: 10.1083/jcb.64.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Bonder E. M., DeRosier D. J. Actin filaments elongate from their membrane-associated ends. J Cell Biol. 1981 Aug;90(2):485–494. doi: 10.1083/jcb.90.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]