Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 May 1;93(2):411–416. doi: 10.1083/jcb.93.2.411

Thylakoid membrane biogenesis in Chlamydomonas reinhardtii 137+. II. Cell-cycle variations in the synthesis and assembly of pigment

PMCID: PMC2112859  PMID: 7096445

Abstract

Synthesis of the chlorophyll and the major carotenoid pigments and their assembly into thylakoid membrane have been studied throughout the 12-h light/12-h dark vegetative cell cycle of synchronous Chlamydomonas reinhardtii 137+ (wild-type). Pulse exposure of cells to radioactive acetate under conditions in which labeling accurately reflects lipogenesis, followed by cellular fractionation to purify thylakoid membrane, allowed direct analysis of the pigment synthesis and assembly attendant to thylakoid biogenesis. All pigments are synthesized and assembled into thylakoids continuously, but differentially, with respect to cell-cycle time. Highest synthesis and assembly rates are confined to the photoperiod (mid-to-late G1) and support chlorophyll and carotenoid accretion before M-phase. The lower levels at which these processes take place during the dark period (S, M, and early-to- mid G1) have been ascribed to pigment turnover. Within this general periodic pattern, pigment synthesis and assembly occur in a "multi- step" manner, i.e., by a temporally-ordered, stepwise integration of the various pigments into the thylakoid membrane matrix. The cell-cycle kinetics of pigment assembly at the subcellular level mirror the kinetics of pigment synthesis at the cellular level, indicating that pigment synthesis not only provides chlorophyll and carotenoid for thylakoid biogenesis but may also serve as a critical rate-determinant to pigment assembly.

Full Text

The Full Text of this article is available as a PDF (634.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argyroudi-Akoyunoglou J. H., Castorinis A. Specificity of the chlorophyll-to-protein binding in the chlorophyll-protein complexes of the thylakoid. Arch Biochem Biophys. 1980 Apr 1;200(2):326–335. doi: 10.1016/0003-9861(80)90362-8. [DOI] [PubMed] [Google Scholar]
  2. Block M. A., Joyard J., Douce R. Site of synthesis of geranylgeraniol derivatives in intact spinach chloroplasts. Biochim Biophys Acta. 1980 Aug 1;631(1):210–219. doi: 10.1016/0304-4165(80)90069-0. [DOI] [PubMed] [Google Scholar]
  3. Bourguignon L. Y., Palade G. E. Incorporation of polypeptides into thylakoid membranes of Chlamydomonas reinhardtii. Cyclic variations. J Cell Biol. 1976 May;69(2):327–344. doi: 10.1083/jcb.69.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chua N. H., Bennoun P. Thylakoid membrane polypeptides of Chlamydomonas reinhardtii: wild-type and mutant strains deficient in photosystem II reaction center. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2175–2179. doi: 10.1073/pnas.72.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Petrocellis B., Siekevitz P., Palade G. E. Changes in chemical composition of thylakoid membranes during greening of the y-1 mutant of Chlamydomonas reinhardi. J Cell Biol. 1970 Mar;44(3):618–634. doi: 10.1083/jcb.44.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Delepelaire P., Chua N. H. Electrophoretic purification of chlorophyll a/b-protein complexes from Chlamydomonas reinhardtii and spinach and analysis of their polypeptide compositions. J Biol Chem. 1981 Sep 10;256(17):9300–9307. [PubMed] [Google Scholar]
  7. Francis G. W., Strand L. P., Lien T., Knutsen G. Variations in the carotenoid content of Chlamydomonas reinhardii throughout the cell cycle. Arch Microbiol. 1975 Aug 28;104(3):249–254. doi: 10.1007/BF00447333. [DOI] [PubMed] [Google Scholar]
  8. Goldberg I., Ohad I. Biogenesis of chloroplast membranes. IV. Lipid and pigment changes during synthesis of chloroplast membranes in a mutant of Chlamydomonas reinhardi y-1. J Cell Biol. 1970 Mar;44(3):563–571. doi: 10.1083/jcb.44.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heelis D. V., Kernick W., Phillips G. O., Davies K. Separation and identification of the carotenoid pigments of stigmata isolated from light-grown cells of Euglena gracilis strain Z. Arch Microbiol. 1979 Jun;121(3):207–211. doi: 10.1007/BF00425057. [DOI] [PubMed] [Google Scholar]
  10. Iwanij V., Chua N. H., Siekevitz P. Synthesis and turnover of ribulose biphosphate carboxylase and of its subunits during the cell cycle of Chlamydomonas reinhardtii. J Cell Biol. 1975 Mar;64(3):572–585. doi: 10.1083/jcb.64.3.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JEFFREY S. W. Paper-chromatographic separation of chlorophylls and carotenoids from marine algae. Biochem J. 1961 Aug;80:336–342. doi: 10.1042/bj0800336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Janero D. R., Barrnett R. Analytical prenyl pigment separation from a total green-plant lipid extract. Anal Biochem. 1981 Mar 1;111(2):283–290. doi: 10.1016/0003-2697(81)90565-0. [DOI] [PubMed] [Google Scholar]
  13. Janero D. R., Barrnett R. Cellular and thylakoid-membrane glycolipids of Chlamydomonas reinhardtii 137+. J Lipid Res. 1981 Sep;22(7):1119–1125. [PubMed] [Google Scholar]
  14. Janero D. R., Barrnett R. Isolation and characterization of an ether-linked homoserine lipid from the thylakoid membrane of Chlamydomonas reinhardtii 137+. J Lipid Res. 1982 Feb;23(2):307–316. [PubMed] [Google Scholar]
  15. Janero D. R., Barrnett R. Thylakoid membrane biogenesis in Chlamydomonas reinhardtii 137+: cell cycle variations in the synthesis and assembly of polar glycerolipid. J Cell Biol. 1981 Oct;91(1):126–134. doi: 10.1083/jcb.91.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krinsky N. I., Levine R. P. Carotenoids of Wild Type and Mutant Strains of the Green Aiga, Chlamydomonas reinhardi. Plant Physiol. 1964 Jul;39(4):680–687. doi: 10.1104/pp.39.4.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lynn Co D. Y., Schanderl S. H. Separation of chlorophylls and related plant pigments by two-dimensional thin-layer chromatography. J Chromatogr. 1967 Feb;26(2):442–448. doi: 10.1016/s0021-9673(01)98901-0. [DOI] [PubMed] [Google Scholar]
  18. Marshall M. O., Kates M. Biosynthesis of phosphatidylglycerol by cell-free preparations from spinach leaves. Biochim Biophys Acta. 1972 Apr 18;260(4):558–570. doi: 10.1016/0005-2760(72)90005-7. [DOI] [PubMed] [Google Scholar]
  19. Ohad I., Siekevitz P., Palade G. E. Biogenesis of chloroplast membranes. I. Plastid dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol. 1967 Dec;35(3):521–552. doi: 10.1083/jcb.35.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ojakian G. K., Satir P. Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by the freeze-fracture technique. Proc Natl Acad Sci U S A. 1974 May;71(5):2052–2056. doi: 10.1073/pnas.71.5.2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  22. SAGER R., ZALOKAR M. Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. Nature. 1958 Jul 12;182(4628):98–100. doi: 10.1038/182098a0. [DOI] [PubMed] [Google Scholar]
  23. Schor S., Siekevitz P., Palade G. E. Cyclic Changes in Thylakoid Membranes of Synchronized Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1970 May;66(1):174–180. doi: 10.1073/pnas.66.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Siebertz H. P., Heinz E., Linscheid M., Joyard J., Douce R. Characterization of lipids from chloroplast envelopes. Eur J Biochem. 1979 Nov;101(2):429–438. doi: 10.1111/j.1432-1033.1979.tb19736.x. [DOI] [PubMed] [Google Scholar]
  25. Spudich J. L., Sager R. Regulation of the Chlamydomonas cell cycle by light and dark. J Cell Biol. 1980 Apr;85(1):136–145. doi: 10.1083/jcb.85.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES