Abstract
A new, fluorescent, highly selective Ca2+ indicator , "quin2", has been trapped inside intact mouse and pig lymphocytes, to measure and manipulate cytoplasmic free Ca2+ concentrations, [Ca2+]i. Quin2 is a tetracarboxylic acid which binds Ca2+ with 1:1 stoichiometry and an effective dissociation constant of 115 nM in a cationic background mimicking cytoplasm. Its fluorescence signal (excitation 339 nm, emission 492 nm) increases about fivefold going from Ca-free to CA- saturated forms. Cells are loaded with quin2 by incubation with its acetoxymethyl ester, which readily permeates the membrane and is hydrolyzed in the cytoplasm, thus trapping the impermeant quin2 there. The intracellular quin2 appears to be free in cytoplasm, not bound to membranes and not sequestered inside organelles. The fluorescence signal from resting cells indicates a [Ca2+]i of near 120 nM. The millimolar loadings of quin2 needed for accurately calibrated signals do not seem to perturb steady-state [Ca2+]i, but do somewhat slow or blunt [Ca2+]i transients. Loadings of up to 2mM are without serious toxic effects, though above this level some lowering of cellular ATP is observed. [Ca2+]i was well stabilized in the face of large changes in external Ca2+. Alterations of Na+ gradients, membrane potential, or intracellular pH had little effect. Mitochondrial poisons produced a small increase in [Ca2+]i, probably due mostly to the effects of severe ATP depletion on the plasma membrane. Thus intracellulary trapped chelators like quin2 offer a method to measure or buffer [Ca2+]i in hitherto intractable cell types.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez-Leefmans F. J., Rink T. J., Tsien R. Y. Free calcium ions in neurones of Helix aspersa measured with ion-selective micro-electrodes. J Physiol. 1981 Jun;315:531–548. doi: 10.1113/jphysiol.1981.sp013762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F., Knight D. E. Gaining access to the site of exocytosis in bovine adrenal medullary cells. J Physiol (Paris) 1980 Sep;76(5):497–504. [PubMed] [Google Scholar]
- Brinley F. J., Jr Calcium buffering in squid axons. Annu Rev Biophys Bioeng. 1978;7:363–392. doi: 10.1146/annurev.bb.07.060178.002051. [DOI] [PubMed] [Google Scholar]
- CHEN R. F., BOWMAN R. L. FLUORESCENCE POLARIZATION: MEASUREMENT WITH ULTRAVIOLET-POLARIZING FILTERS IN A SPECTROPHOTOFLUOROMETER. Science. 1965 Feb 12;147(3659):729–732. doi: 10.1126/science.147.3659.729. [DOI] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G., Edgell N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107–117. doi: 10.1042/bj1900107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreira H. G., Lew V. L. Proceedings: Ca transport and Ca pump reversal in human red blood cells. J Physiol. 1975 Nov;252(2):86P–87P. [PubMed] [Google Scholar]
- Hesketh T. R., Smith G. A., Houslay M. D., Warren G. B., Metcalfe J. C. Is an early calcium flux necessary to stimulate lymphocytes? Nature. 1977 Jun 9;267(5611):490–494. doi: 10.1038/267490a0. [DOI] [PubMed] [Google Scholar]
- Lichtman A. H., Segel G. B., Lichtman M. A. Calcium transport and calcium-ATPase activity in human lymphocyte plasma membrane vesicles. J Biol Chem. 1981 Jun 25;256(12):6148–6154. [PubMed] [Google Scholar]
- Lyall R. M., Dubois J. H., Crumpton M. J. Ionomycin stimulates T-lymphocytes to grow. Biochem Soc Trans. 1980 Dec;8(6):720–721. doi: 10.1042/bst0080720a. [DOI] [PubMed] [Google Scholar]
- Montecucco C., Pozzan T., Rink T. Dicarbocyanine fluorescent probes of membrane potential block lymphocyte capping, deplete cellular ATP and inhibit respiration of isolated mitochondria. Biochim Biophys Acta. 1979 Apr 19;552(3):552–557. doi: 10.1016/0005-2736(79)90201-3. [DOI] [PubMed] [Google Scholar]
- Montecucco C., Rink T. J., Pozzan T., Metcalfe J. C. Triggering of lymphocyte capping appears not to require changes in potential or ion fluxes across the plasma membrane. Biochim Biophys Acta. 1980;595(1):65–70. doi: 10.1016/0005-2736(80)90248-5. [DOI] [PubMed] [Google Scholar]
- Murphy E., Coll K., Rich T. L., Williamson J. R. Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem. 1980 Jul 25;255(14):6600–6608. [PubMed] [Google Scholar]
- Palmer L. G., Civan M. M. Distribution of Na+, K+ and Cl- between nucleus and cytoplasm in Chironomus salivary gland cells. J Membr Biol. 1977 May 6;33(1-2):41–61. doi: 10.1007/BF01869511. [DOI] [PubMed] [Google Scholar]
- Pozzan T., Corps A. N., Montecucco C., Hesketh T. R., Metcalfe J. C. Cap formation by various ligands on lymphocytes shows the same dependence on high cellular ATP levels. Biochim Biophys Acta. 1980 Nov 18;602(3):558–566. doi: 10.1016/0005-2736(80)90334-x. [DOI] [PubMed] [Google Scholar]
- Rink T. J., Montecucco C., Hesketh T. R., Tsien R. Y. Lymphocyte membrane potential assessed with fluorescent probes. Biochim Biophys Acta. 1980;595(1):15–30. doi: 10.1016/0005-2736(80)90243-6. [DOI] [PubMed] [Google Scholar]
- Rink T. J. The influence of sodium on calcium movements and catecholamine release in thin slices of bovine adrenal medulla. J Physiol. 1977 Apr;266(2):297–325. doi: 10.1113/jphysiol.1977.sp011769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott I. D., Akerman K. E., Nicholls D. G. Calcium-ion transport by intact synaptosomes. Intrasynaptosomal compartmentation and the role of the mitochondrial membrane potential. Biochem J. 1980 Dec 15;192(3):873–880. doi: 10.1042/bj1920873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siebert G. The limited contribution of the nuclear envelope to metabolic compartmentation. Biochem Soc Trans. 1978;6(1):5–9. doi: 10.1042/bst0060005. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature. 1981 Apr 9;290(5806):527–528. doi: 10.1038/290527a0. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]