Abstract
Chemoattractants added to cells of the cellular slime mold dictyostelium discoideum induce a transient elevation of cyclic GMP levels, with a maximum at 10 s and a recovery of basal levels at approximately 25 s after stimulation. We analyzed the kinetics of an intracellular cGMP binding protein in vitro and in vivo. The cyclic GMP binding protein in vitro at 0 degrees C can be described by its kinetic constants K(1)=2.5 x 10(6) M(- 1)s(-1), k(-1)=3.5 x 10(-3)s(-1), K(d)=1.4 x 10(-9) M, and 3,000 binding sites/cell. In computer simulation experiments the occupancy of the cGMP binding protein was calculated under nonequilibrium conditions by making use of the kinetic constants of the binding protein and of the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions by making use of the kinetic constants of the binding protein and the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions the affinity of the binding protein for cGMP is determined by the rate constant of association (k(1)) and not by the dissociation constant (k(d)). Experiments in vivo were performed by stimulation of aggregative cells with the chemoattractant cAMP, which results in a transient cGMP accumulation. At different times after stimulation with various cAMP concentrations, the cells were homogenized and immediately thereafter the number of binding proteins which were not occupied with native cGMP were determined. The results of these experiments in vivo are in good agreement with the results of the computer experiments. This may indicate that: (a) The cGMP binding protein in vivo at 22 degrees C can be described by its kinetic constants: K(1)=4x10(6)M(-1)s(-1) and K(-1)=6x10(-3)s(-1). (b) Binding the cGMP to its binding protein is transient with a maximum at about 20-30 s after chemotactic stimulation, followed by a decay to basal levels, with a half-life of approximately 2 min. (c) The cGMP to its binding proteins get half maximally occupied at a cGMP accumulation of δ[cGMP](10)=2x10(-8) M, which corresponds to an extracellular stimulation of aggregative cells by 10(-10) M cAMP. (d) Since the mean basal cGMP concentration is approximately 2x10(-7) M, the small increase of cGMP cannot be detected accurately. Therefore the absence of a measurable cGMP accumulation does not argue against a cGMP function. (e) There may exist two compartments of cGMP: one contains almost all the cGMP of unstimulated cells, and the other contains cGMP binding proteins and the cGMP which accumulates after chemotactic stimulation. (f) From the kinetics of binding, the cellular responses to the chemoattractant can be divided into two classes: responses which can be mediated by this binding protein (such as light scattering, proton extrusion, PDE induction, and chemotaxis) and responses which cannot be (solely) mediated by this binding protein such as rlay, refractoriness, phospholipids methylation, and protein methylation.
Full Text
The Full Text of this article is available as a PDF (816.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alemany S., García Gil M., Mato J. M. Regulation by guanosine 3':5'-cyclic monophosphate of phospholipid methylation during chemotaxis in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1980 Dec;77(12):6996–6999. doi: 10.1073/pnas.77.12.6996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner J. T., Barkley D. S., Hall E. M., Konijn T. M., Mason J. W., O'Keefe G., 3rd, Wolfe P. B. Acrasin, Acrasinase, and the sensitivity to acrasin in Dictyostelium discoideum. Dev Biol. 1969 Jul;20(1):72–87. doi: 10.1016/0012-1606(69)90005-0. [DOI] [PubMed] [Google Scholar]
- Darmon M., Brachet P., Da Silva L. H. Chemotactic signals induce cell differentiation in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3163–3166. doi: 10.1073/pnas.72.8.3163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeMeyts P., Bainco A. R., Roth J. Site-site interactions among insulin receptors. Characterization of the negative cooperativity. J Biol Chem. 1976 Apr 10;251(7):1877–1888. [PubMed] [Google Scholar]
- Devreotes P. N., Derstine P. L., Steck T. L. Cyclic 3',5' AMP relay in Dictyostelium discoideum. I. A technique to monitor responses to controlled stimuli. J Cell Biol. 1979 Feb;80(2):291–299. doi: 10.1083/jcb.80.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devreotes P. N., Steck T. L. Cyclic 3',5' AMP relay in Dictyostelium discoideum. II. Requirements for the initiation and termination of the response. J Cell Biol. 1979 Feb;80(2):300–309. doi: 10.1083/jcb.80.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Francis S. H., Lincoln T. M., Corbin J. D. Characterization of a novel cGMP binding protein from rat lung. J Biol Chem. 1980 Jan 25;255(2):620–626. [PubMed] [Google Scholar]
- Gerisch G., Fromm H., Huesgen A., Wick U. Control of cell-contact sites by cyclic AMP pulses in differentiating Dictyostelium cells. Nature. 1975 Jun 12;255(5509):547–549. doi: 10.1038/255547a0. [DOI] [PubMed] [Google Scholar]
- Gerisch G., Hess B. Cyclic-AMP-controlled oscillations in suspended Dictyostelium cells: their relation to morphogenetic cell interactions. Proc Natl Acad Sci U S A. 1974 May;71(5):2118–2122. doi: 10.1073/pnas.71.5.2118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerisch G., Hülser D., Malchow D., Wick U. Cell communication by periodic cyclic-AMP pulses. Philos Trans R Soc Lond B Biol Sci. 1975 Nov 6;272(915):181–192. doi: 10.1098/rstb.1975.0080. [DOI] [PubMed] [Google Scholar]
- Gerisch G., Wick U. Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem Biophys Res Commun. 1975 Jul 8;65(1):364–370. doi: 10.1016/s0006-291x(75)80102-1. [DOI] [PubMed] [Google Scholar]
- Green A. A., Newell P. C. Evidence for the existence of two types of cAMP binding sites in aggregating cells of Dictyostelium discoideum. Cell. 1975 Oct;6(2):129–136. doi: 10.1016/0092-8674(75)90003-3. [DOI] [PubMed] [Google Scholar]
- Henderson E. J. The cyclic adenosine 3':5'-monophosphate receptor of Dictyostelium discoideum. Binding characteristics of aggregation-competent cells and variation of binding levels during the life cycle. J Biol Chem. 1975 Jun 25;250(12):4730–4736. [PubMed] [Google Scholar]
- KONIJN T. M., RAPER K. B. Cell aggregation in Dictyostelium discoideum. Dev Biol. 1961 Dec;3:725–756. doi: 10.1016/0012-1606(61)90038-0. [DOI] [PubMed] [Google Scholar]
- Klein C., Darmon M. Effects of cyclic AMP pulses on adenylate cyclase and the phosphodiesterase inhibitor of D. discoideum. Nature. 1977 Jul 7;268(5615):76–78. doi: 10.1038/268076a0. [DOI] [PubMed] [Google Scholar]
- Klein C. Induction of phosphodiesterase by cyclic adenosine 3':5'-monophosphate in differentiating Dictyostelium discoideum amoebae. J Biol Chem. 1975 Sep 25;250(18):7134–7138. [PubMed] [Google Scholar]
- Konijn T. M., Van De Meene J. G., Bonner J. T., Barkley D. S. The acrasin activity of adenosine-3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1152–1154. doi: 10.1073/pnas.58.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malchow D., Gerisch G. Short-term binding and hydrolysis of cyclic 3':5'-adenosine monophosphate by aggregating Dictyostelium cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2423–2427. doi: 10.1073/pnas.71.6.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malchow D., Nanjundiah V., Wurster B., Eckstein F., Gerisch G. Cyclic AMP-induced pH changes in Dictyostelium discoideum and their control by calcium. Biochim Biophys Acta. 1978 Feb 1;538(3):473–480. doi: 10.1016/0304-4165(78)90408-7. [DOI] [PubMed] [Google Scholar]
- Marin F. T., Rothman F. G. Regulation of development in Dictyostelium discoideum. IV. Effects of ions on the rate of differentiation and cellular response to cyclic AMP. J Cell Biol. 1980 Dec;87(3 Pt 1):823–827. doi: 10.1083/jcb.87.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mato J. M., Krens F. A., van Haastert P. J., Konijn T. M. 3':5'-cyclic AMP-dependent 3':5'-cyclic GMP accumulation in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2348–2351. doi: 10.1073/pnas.74.6.2348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mato J. M., Krens F. A., van Haastert P. J., Konijn T. M. Unified control of chemotaxis and cAMP mediated cGMP accumulation by cAMP in Dictyostelium discoideum. Biochem Biophys Res Commun. 1977 Jul 11;77(1):399–402. doi: 10.1016/s0006-291x(77)80211-8. [DOI] [PubMed] [Google Scholar]
- Mato J. M., Losada A., Nanjundiah V., Konijn T. M. Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4991–4993. doi: 10.1073/pnas.72.12.4991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mato J. M., Marín-Cao D. Protein and phospholipid methylation during chemotaxis in Dictyostelium discoideum and its relationship to calcium movements. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6106–6109. doi: 10.1073/pnas.76.12.6106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mato J. M., Steiner A. L. Immunohistochemical localization of cyclic AMP, cyclic GMP and calmodulin in Dictyostelium discoideum. Cell Biol Int Rep. 1980 Jul;4(7):641–648. doi: 10.1016/0309-1651(80)90202-7. [DOI] [PubMed] [Google Scholar]
- Mato J. M., Van Haastert P. J., Krens F. A., Rhijnsburger E. H., Dobbe F. C., Konijn T. M. Cyclic AMP and folic acid mediated cyclic GMP accumulation in Dictyostelium discoideum. FEBS Lett. 1977 Jul 15;79(2):331–336. doi: 10.1016/0014-5793(77)80814-4. [DOI] [PubMed] [Google Scholar]
- Mato J. M., Woelders H., Konijn T. M. Intracellular cyclic GMP-binding proteins in cellular slime molds. J Bacteriol. 1979 Jan;137(1):169–172. doi: 10.1128/jb.137.1.169-172.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mato J. M., Woelders H., van Haastert P. J., Konijn T. M. Cyclic GMP binding activity in Dictyostelium discoideum. FEBS Lett. 1978 Jun 15;90(2):261–264. doi: 10.1016/0014-5793(78)80381-0. [DOI] [PubMed] [Google Scholar]
- Rahmsdorf H. J., Gerisch G. Specific binding proteins for cyclic AMP and cyclic GMP in Dictyostelium discoideum. Cell Differ. 1978 Oct;7(5):249–257. doi: 10.1016/0045-6039(78)90026-x. [DOI] [PubMed] [Google Scholar]
- Van Haastert P. J., Van Der Meer R. C., Konijn T. M. Evidence that the rate of association of adenosine 3',5'-monophosphate to its chemotactic receptor induces phosphodiesterase activity in Dictyostelium discoideum. J Bacteriol. 1981 Jul;147(1):170–175. doi: 10.1128/jb.147.1.170-175.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wurster B., Bozzaro S., Gerisch G. Cyclic GMP regulation and responses of Polysphondylium violaceum to chemoattractants. Cell Biol Int Rep. 1978 Jan;2(1):61–69. doi: 10.1016/0309-1651(78)90085-1. [DOI] [PubMed] [Google Scholar]
- Wurster B., Pan P., Tyan G. G., Bonner J. T. Preliminary characterization of the acrasin of the cellular slime mold Polysphondylium violaceum. Proc Natl Acad Sci U S A. 1976 Mar;73(3):795–799. doi: 10.1073/pnas.73.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wurster B., Schubiger K., Wick U., Gerisch G. Cyclic GMP in Dictyostelium discoideum, Oscillations and pulses in response to folic acid and cyclic AMP signals. FEBS Lett. 1977 Apr 15;76(2):141–144. doi: 10.1016/0014-5793(77)80139-7. [DOI] [PubMed] [Google Scholar]
- de Meyts P., Roth J., Neville D. M., Jr, Gavin J. R., 3rd, Lesniak M. A. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun. 1973 Nov 1;55(1):154–161. doi: 10.1016/s0006-291x(73)80072-5. [DOI] [PubMed] [Google Scholar]
- van Haastert P. J., van Walsum H., van der Meer R. C., Bulgakov R., Konijn T. M. Specificity of the cyclic GMP-binding activity and of a cyclic GMP-dependent cyclic GMP phosphodiesterase in Dictyostelium discoideum. Mol Cell Endocrinol. 1982 Feb;25(2):171–182. doi: 10.1016/0303-7207(82)90050-8. [DOI] [PubMed] [Google Scholar]