Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Aug 1;94(2):406–413. doi: 10.1083/jcb.94.2.406

Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors

PMCID: PMC2112875  PMID: 7107706

Abstract

Lectins conjugated with either peroxidase or ferritin were used to detect specific monosaccharide residues on the luminal front of he fenestrated endothelium in the capillaries of murine pancreas and intestinal mucosa. The lectins tested recognize, if accessible, the following residues: alpha-N-acetylgalactosaminyl (soybean lectin), beta- D-galactosyl (peanut agglutinin [PA] and Ricinus communis agglutinin- 120 [RCA]), beta-N-acetylglucosaminyl and sialyl residues (wheat germ agglutinin [WGA]), alpha-L-fucosyl (lotus tetragonolobus lectin), and alpha-D-glucosyl and beta-D-mannosyl (concanavalin A [ConA]). Thi labeled lectins were introduced by perfusion in situ after thoroughly flushing with phosphate-buffered saline the microvascular beds under investigation. Specimens were fixed by perfusion, and subsequently processed for peroxidase detection and electron microscopy. Control experiments included perfusion with: (a) unlabeled lectin before lectin conjugate; (b) labeled lectin together with the cognate hapten sugar, and (c) horseradish peroxidase or ferritin alone. Binding sites were found to be relatively homogeneously distributed on the plasmalemma proper, except for Lotus tetragonolobus lectin and Con A, which frequently bound in patches. Plasmalemmal vesicles, transendothelial channels, and their associated diaphragms were particularly rich in residues recognized by RCA and PA (beta-D-galactosyl residues) and by WGA (beta-N-acetylglucosaminyl residues). Receptors for all lectins tested appeared to be absent or considerably less concentrated on fenestral diaphragms. The results reported here extend and complement previous findings on the existence of microdomains generated by the preferential distribution of chemically different anionic sites (Simionescu et al., 1981, J. Cell Biol., 9:605-613 and 614-621).

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avrameas S. Emploi de la concanavaline-A pour l'isolement, la détection et la mesure des glycoprotéines et glucides extra- ou endo-cellulaires. C R Acad Sci Hebd Seances Acad Sci D. 1970 May 4;18:2205–2208. [PubMed] [Google Scholar]
  2. Bernhard W., Avrameas S. Ultrastructural visualization of cellular carbohydrate components by means of concanavalin A. Exp Cell Res. 1971 Jan;64(1):232–236. doi: 10.1016/0014-4827(71)90217-5. [DOI] [PubMed] [Google Scholar]
  3. Bignon J., Jaubert F., Jaurand M. C. Plasma protein immunocytochemistry and polysaccharide cytochemistry at the surface of alveolar and endothelial cells in the rat lung. J Histochem Cytochem. 1976 Oct;24(10):1076–1084. doi: 10.1177/24.10.789758. [DOI] [PubMed] [Google Scholar]
  4. Bretton R., Bariety J. A comparative ultrastructural localization of concanavalin A, wheat germ and Ricinus communis on glomeruli of normal rat kidney. J Histochem Cytochem. 1976 Oct;24(10):1093–1100. doi: 10.1177/24.10.977938. [DOI] [PubMed] [Google Scholar]
  5. Brown J. C., Hunt R. C. Lectins. Int Rev Cytol. 1978;52:277–349. doi: 10.1016/s0074-7696(08)60758-5. [DOI] [PubMed] [Google Scholar]
  6. Feller M., Morris R., Gruenstein E. Cellular distribution of high and low affinity concanavalin A binding sites on the plasma membrane of normal human fibroblasts. J Histochem Cytochem. 1979 Dec;27(12):1610–1617. doi: 10.1177/27.12.521618. [DOI] [PubMed] [Google Scholar]
  7. Gonatas N. K., Avrameas S. Detection of plasma membrane carbohydrates with lectin peroxidase conjugates. J Cell Biol. 1973 Nov;59(2 Pt 1):436–443. doi: 10.1083/jcb.59.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  9. Hirano H., Parkhouse B., Nicolson G. L., Lennox E. S., Singer S. J. Distribution of saccharide residues on membrane fragments from a myeloma-cell homogenate: its implications for membrane biogenesis. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2945–2949. doi: 10.1073/pnas.69.10.2945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kobiler D., Barondes S. H. Lectin from embryonic chick muscle that interacts with glycosaminoglycans. FEBS Lett. 1979 May 15;101(2):257–261. doi: 10.1016/0014-5793(79)81020-0. [DOI] [PubMed] [Google Scholar]
  11. Lis H., Sharon N. The biochemistry of plant lectins (phytohemagglutinins). Annu Rev Biochem. 1973;42(0):541–574. doi: 10.1146/annurev.bi.42.070173.002545. [DOI] [PubMed] [Google Scholar]
  12. Marikovsky Y., Inbar M., Danon D., Sachs L. Distribution of surface charge and concanavalin A-binding sites on normal and malignant transformed cells. Exp Cell Res. 1974 Dec;89(2):359–367. doi: 10.1016/0014-4827(74)90801-5. [DOI] [PubMed] [Google Scholar]
  13. Martinez-Palomo A., Wicker R., Bernhard W. Ultrastructural detection of concanavalin surface receptors in normal and in polyoma-transformed cells. Int J Cancer. 1972 May 15;9(3):676–684. doi: 10.1002/ijc.2910090326. [DOI] [PubMed] [Google Scholar]
  14. Maylié-Pfenninger M. F., Jamieson J. D. Distribution of cell surface saccharides on pancreatic cells. II. Lectin-labeling patterns on mature guinea pig and rat pancreatic cells. J Cell Biol. 1979 Jan;80(1):77–95. doi: 10.1083/jcb.80.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Monsigny M., Roche A. C., Sene C., Maget-Dana R., Delmotte F. Sugar-lectin interactions: how does wheat-germ agglutinin bind sialoglycoconjugates? Eur J Biochem. 1980 Feb;104(1):147–153. doi: 10.1111/j.1432-1033.1980.tb04410.x. [DOI] [PubMed] [Google Scholar]
  16. Nicolson G. L., Singer S. J. Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: application to saccharides bound to cell membranes. Proc Natl Acad Sci U S A. 1971 May;68(5):942–945. doi: 10.1073/pnas.68.5.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Novogrodsky A., Lotan R., Ravid A., Sharon N. Peanut agglutinin, a new mitogen that binds to galactosyl sites exposed after neuraminidase treatment. J Immunol. 1975 Nov;115(5):1243–1248. [PubMed] [Google Scholar]
  18. Ochoa J. L., Kristiansen T., Påhlman S. Hydrophobicity of lectins. I. The hydrophobic character of concanavalin A. Biochim Biophys Acta. 1979 Mar 27;577(1):102–109. doi: 10.1016/0005-2795(79)90011-4. [DOI] [PubMed] [Google Scholar]
  19. Peters B. P., Ebisu S., Goldstein I. J., Flashner M. Interaction of wheat germ agglutinin with sialic acid. Biochemistry. 1979 Nov 27;18(24):5505–5511. doi: 10.1021/bi00591a038. [DOI] [PubMed] [Google Scholar]
  20. Sharon N., Lis H. Lectins: cell-agglutinating and sugar-specific proteins. Science. 1972 Sep 15;177(4053):949–959. doi: 10.1126/science.177.4053.949. [DOI] [PubMed] [Google Scholar]
  21. Simionescu M., Simionescu N., Silbert J. E., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol. 1981 Sep;90(3):614–621. doi: 10.1083/jcb.90.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Simionescu N., Siminoescu M., Palade G. E. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol. 1975 Mar;64(3):586–607. doi: 10.1083/jcb.64.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Simionescu N., Simionescu M., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol. 1981 Sep;90(3):605–613. doi: 10.1083/jcb.90.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stein O., Chajek T., Stein Y. Ultrastructural localization of concanavalin A in the perfused rat heart. Lab Invest. 1976 Aug;35(2):103–110. [PubMed] [Google Scholar]
  26. Wagner R. C., Andrews S. B., Matthews M. A. A fluorescense assay for micropinocytosis in isolated capillary endothelium. Microvasc Res. 1977 Jul;14(1):67–80. doi: 10.1016/0026-2862(77)90142-x. [DOI] [PubMed] [Google Scholar]
  27. Weber G., Fabbrini P., Resi L. On the presence of a concanavalin-A reactive coat over the endothelial aortic surface and its modifications during early experimental cholesterol atherogenesis in rabbits. Virchows Arch A Pathol Pathol Anat. 1973 Jun 29;359(4):299–307. doi: 10.1007/BF00548601. [DOI] [PubMed] [Google Scholar]
  28. Williams S. K., Devenny J. J., Bitensky M. W. Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2393–2397. doi: 10.1073/pnas.78.4.2393. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES