Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Aug 1;94(2):394–399. doi: 10.1083/jcb.94.2.394

Coupling of proadipocyte growth arrest and differentiation. I. Induction by heparinized medium containing human plasma

PMCID: PMC2112890  PMID: 7107705

Abstract

The differentiation of proadipocytes in vitro typically required prolonged culture of cells as a high density in high concentrations of serum and added hormones. With such culture conditions it is difficult to design experiments to determine the mechanisms that control the differentiation process. We now describe the rapid and parasynchronous growth arrest and differentiation of low density murine proadipocytes in heparinized medium containing only human plasma. When low density cells are cultured under these conditions, growth arrest at a distinct state in the G1 phase of the cell cycle occurs within 2 d and the differentiation of 80-100% of the cell population occurs within 4 d thereafter. The factors in human plasma which promote growth arrest and differentiation are heat labile and can be separated by barium adsorption. In the following paper we have used these methods to show that there are five separate phases which regulate the coupling of proadipocyte growth arrest and differentiation. The data reported in this paper establish that: (a) high cell density and extensive cell-to- cell contact are not required for adipocyte differentiation, (b) prolonged culture is not required for adipocyte differentiation, and (c) high concentrations of serum and/or added hormones are not required for adipocyte differentiation.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astedt B., Mattsson W., Tropé C. Treatment of advanced breast cancer with chemotherapeutics and inhibition of coagulation and fibrinolysis. Acta Med Scand. 1977;201(5):491–493. doi: 10.1111/j.0954-6820.1977.tb15735.x. [DOI] [PubMed] [Google Scholar]
  2. Benz E. W., Jr, Getz M. J., Wells D. J., Moses H. L. Nuclear RNA polymerase activities and poly(A)-containing mRNA accumulation in cultured AKR mouse embryo cells stimulated to proliferate. Exp Cell Res. 1977 Aug;108(1):157–165. [PubMed] [Google Scholar]
  3. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  4. Diamond L., O'Brien T. G., Rovera G. Inhibition of adipose conversion of 3T3 fibroblasts by tumour promoters. Nature. 1977 Sep 15;269(5625):247–249. doi: 10.1038/269247a0. [DOI] [PubMed] [Google Scholar]
  5. Elias E. G., Shukla S. K., Mink I. B. Heparin and chemotherapy in the management of inoperable lung carcinoma. Cancer. 1975 Jul;36(1):129–136. doi: 10.1002/1097-0142(197507)36:1<129::aid-cncr2820360109>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  6. Fielding C. J. Validation of a procedure for exogenous isotopic labeling of lipoprotein triglyceride with radioactive triolein. Biochim Biophys Acta. 1979 May 25;573(2):255–265. doi: 10.1016/0005-2760(79)90059-6. [DOI] [PubMed] [Google Scholar]
  7. Green H., Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975 May;5(1):19–27. doi: 10.1016/0092-8674(75)90087-2. [DOI] [PubMed] [Google Scholar]
  8. Green H., Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell. 1974 Oct;3(2):127–133. doi: 10.1016/0092-8674(74)90116-0. [DOI] [PubMed] [Google Scholar]
  9. Hagmar B., Boeryd B. Distribution of intravenously induced metastases in heparin- and coumarin-treated mice. Pathol Eur. 1969;4(2):103–111. [PubMed] [Google Scholar]
  10. Hatcher V. B., Tsien G., Oberman M. S., Burk P. G. Inhibition of cell proliferation and protease activity by cartilage factors and heparin. J Supramol Struct. 1980;14(1):33–46. doi: 10.1002/jss.400140105. [DOI] [PubMed] [Google Scholar]
  11. Hoover R. L., Rosenberg R., Haering W., Karnovsky M. J. Inhibition of rat arterial smooth muscle cell proliferation by heparin. II. In vitro studies. Circ Res. 1980 Oct;47(4):578–583. doi: 10.1161/01.res.47.4.578. [DOI] [PubMed] [Google Scholar]
  12. Karaivanova M., Getov H. Growth characteristics of the RL-67 lung tumor -- a new model for experimental therapy of metastatic processes. Neoplasma. 1978;25(5):601–607. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Mann K. G. Prothrombin. Methods Enzymol. 1976;45:123–156. doi: 10.1016/s0076-6879(76)45016-4. [DOI] [PubMed] [Google Scholar]
  15. Millar R. C., Ketcham A. S. The effect of heparin and warfarin on primary and metastatic tumors. J Med. 1974;5(1):23–31. [PubMed] [Google Scholar]
  16. Nadal-Ginard B. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell. 1978 Nov;15(3):855–864. doi: 10.1016/0092-8674(78)90270-2. [DOI] [PubMed] [Google Scholar]
  17. Pardee A. B., Dubrow R., Hamlin J. L., Kletzien R. F. Animal cell cycle. Annu Rev Biochem. 1978;47:715–750. doi: 10.1146/annurev.bi.47.070178.003435. [DOI] [PubMed] [Google Scholar]
  18. Scott R. E., Boman B. M., Swartzendruber D. E., Zschunke M. A., Hoerl B. J. Cell cycle-associated modulation in cAMP-dependent plasma membrane phosphorylation. Exp Cell Res. 1981 May;133(1):73–82. doi: 10.1016/0014-4827(81)90358-x. [DOI] [PubMed] [Google Scholar]
  19. Scott R. E., Florine D. L., Wille J. J., Jr, Yun K. Coupling of growth arrest and differentiation at a distinct state in the G1 phase of the cell cycle: GD. Proc Natl Acad Sci U S A. 1982 Feb;79(3):845–849. doi: 10.1073/pnas.79.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stanford C. F. Anticoagulants in the treatment of small cell carcinoma of the bronchus. Thorax. 1979 Feb;34(1):113–116. doi: 10.1136/thx.34.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tobey R. A., Ley K. D. Isoleucine-mediated regulation of genome repliction in various mammalian cell lines. Cancer Res. 1971 Jan;31(1):46–51. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES