Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Aug 1;94(2):387–393. doi: 10.1083/jcb.94.2.387

Relationship between the density distribution of intramembrane particles and electron transfer in the mitochondrial inner membrane as revealed by cholesterol incorporation

PMCID: PMC2112900  PMID: 7107704

Abstract

A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Human red cell glycolytic intermediates. J Biol Chem. 1959 Mar;234(3):449–458. [PubMed] [Google Scholar]
  2. COURCHAINE A. J., MILLER W. H., STEIN D. B., Jr Rapid semi-micro procedure for estimating free and total cholesterol. Clin Chem. 1959 Dec;5:609–614. [PubMed] [Google Scholar]
  3. Cherry R. J., Müller U., Holenstein C., Heyn M. P. Lateral segregation of proteins induced by cholesterol in bacteriorhodopsin-phospholipid vesicles. Biochim Biophys Acta. 1980 Feb 15;596(1):145–151. doi: 10.1016/0005-2736(80)90179-0. [DOI] [PubMed] [Google Scholar]
  4. Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):462–492. doi: 10.1016/0005-2736(71)90123-4. [DOI] [PubMed] [Google Scholar]
  5. Comte J., Maïsterrena B., Gautheron D. C. Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria. Comparison with microsomes. Biochim Biophys Acta. 1976 Jan 21;419(2):271–284. doi: 10.1016/0005-2736(76)90353-9. [DOI] [PubMed] [Google Scholar]
  6. Cooper R. A., Leslie M. H., Fischkoff S., Shinitzky M., Shattil S. J. Factors influencing the lipid composition and fluidity of red cell membranes in vitro: production of red cells possessing more than two cholesterols per phospholipid. Biochemistry. 1978 Jan 24;17(2):327–331. doi: 10.1021/bi00595a021. [DOI] [PubMed] [Google Scholar]
  7. Edidin M., Fambrough D. Fluidity of the surface of cultured muscle fibers. Rapid lateral diffusion of marked surface antigens. J Cell Biol. 1973 Apr;57(1):27–37. doi: 10.1083/jcb.57.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Estep T. N., Mountcastle D. B., Biltonen R. L., Thompson T. E. Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures. Biochemistry. 1978 May 16;17(10):1984–1989. doi: 10.1021/bi00603a029. [DOI] [PubMed] [Google Scholar]
  9. Hackenbrock C. R. Energy-linked ultrastructural transformations in isolated liver mitochondria and mitoplasts. Preservation of configurations by freeze-cleaving compared to chemical fixation. J Cell Biol. 1972 May;53(2):450–465. doi: 10.1083/jcb.53.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanski E., Rimon G., Levitzki A. Adenylate cyclase activation by the beta-adrenergic receptors as a diffusion-controlled process. Biochemistry. 1979 Mar 6;18(5):846–853. doi: 10.1021/bi00572a017. [DOI] [PubMed] [Google Scholar]
  11. Heron C., Ragan C. I., Trumpower B. L. The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Restoration of ubiquinone-pool behaviour. Biochem J. 1978 Sep 15;174(3):791–800. doi: 10.1042/bj1740791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martin R. B., Yeagle P. L. Models for lipid organization in cholesterol-phospholipid bilayers including cholesterol dimer formation. Lipids. 1978 Sep;13(9):594–597. doi: 10.1007/BF02535821. [DOI] [PubMed] [Google Scholar]
  14. Moor H. Freeze-etching. Int Rev Cytol. 1969;25:391–412. doi: 10.1016/s0074-7696(08)60209-0. [DOI] [PubMed] [Google Scholar]
  15. Müller M., Meister N., Moor H. Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie. 1980 Sep;36(5-6):129–140. [PubMed] [Google Scholar]
  16. Oldfield E., Meadows M., Rice D., Jacobs R. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. Biochemistry. 1978 Jul 11;17(14):2727–2740. doi: 10.1021/bi00607a006. [DOI] [PubMed] [Google Scholar]
  17. Ragan C. I. The role of phospholipids in the reduction of ubiquinone analogues by the mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase complex. Biochem J. 1978 Jun 15;172(3):539–547. doi: 10.1042/bj1720539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rubenstein J. L., Smith B. A., McConnell H. M. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc Natl Acad Sci U S A. 1979 Jan;76(1):15–18. doi: 10.1073/pnas.76.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schneider H., Lemasters J. J., Höchli M., Hackenbrock C. R. Fusion of liposomes with mitochondrial inner membranes. Proc Natl Acad Sci U S A. 1980 Jan;77(1):442–446. doi: 10.1073/pnas.77.1.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schneider H., Lemasters J. J., Höchli M., Hackenbrock C. R. Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components. J Biol Chem. 1980 Apr 25;255(8):3748–3756. [PubMed] [Google Scholar]
  22. Strittmatter P., Rogers M. J. Apparent dependence of interactions between cytochrome b5 and cytochrome b5 reductase upon translational diffusion in dimyristoyl lecithin liposomes. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2658–2661. doi: 10.1073/pnas.72.7.2658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taniguchi H., Imai Y., Iyanagi T., Sato R. Interaction between NADPH-cytochrome P-450 reductase and cytochrome P-450 in the membrane of phosphatidylcholine vesicles. Biochim Biophys Acta. 1979 Jan 19;550(2):341–356. doi: 10.1016/0005-2736(79)90220-7. [DOI] [PubMed] [Google Scholar]
  24. Vanneste W. H. Molecular proportion of the fixed cytochrome components of the respiratory chain of Keilin-Hartree particles and beef heart mitochondria. Biochim Biophys Acta. 1966 Jan 11;113(1):175–178. doi: 10.1016/s0926-6593(66)80132-7. [DOI] [PubMed] [Google Scholar]
  25. Vaz W. L., Jacobson K., Wu E. S., Derzko Z. Lateral mobility of an amphipathic apolipoprotein, ApoC-III, bound to phosphatidylcholine bilayers with and without cholesterol. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5645–5649. doi: 10.1073/pnas.76.11.5645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Verkleij A. J., Ververgaert P. H., de Kruyff B., Van Deenen L. M. The distribution of cholesterol in bilayers of phosphatidylcholines as visualized by freeze fracturing. Biochim Biophys Acta. 1974 Dec 24;373(3):495–501. doi: 10.1016/0005-2736(74)90029-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES