Abstract
Cytoplasmic streaming in characean algae is thought to be driven by interaction between stationary subcortical actin bundles and motile endoplasmic myosin. Implicit in this mechanism is a requirement for some form of coupling to transfer motive force from the moving myosin to the endoplasm. Three models of viscous coupling between myosin and endoplasm are presented here, and the hydrodynamic feasibility of each model is analyzed. The results show that individual myosinlike molecules moving along the actin bundles at reasonable velocities cannot exert enough viscous pull on the endoplasm to account for the observed streaming. Attachment of myosin to small spherical organelles improves viscous coupling to the endoplasm, but results for this model show that streaming can be generated only if the myosin-spheres move along the actin bundles in a virtual solid line at about twice the streaming velocity. In the third model, myosin is incorporated into a fibrous or membranous network or gel extending into the endoplasm. This network is pulled forward as the attached myosin slides along the actin bundles. Using network dimensions estimated from published micrographs of characean endoplasm, the results show that this system can easily generate the observed cytoplasmic streaming.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen N. S., Allen R. D. Cytoplasmic streaming in green plants. Annu Rev Biophys Bioeng. 1978;7:497–526. doi: 10.1146/annurev.bb.07.060178.002433. [DOI] [PubMed] [Google Scholar]
- Allen N. S. Endoplasmic filaments generate the motive force for rotational streaming in Nitella. J Cell Biol. 1974 Oct;63(1):270–287. doi: 10.1083/jcb.63.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradley M. O. Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J Cell Sci. 1973 Jan;12(1):327–343. doi: 10.1242/jcs.12.1.327. [DOI] [PubMed] [Google Scholar]
- Donaldson I. G. Cyclic longitudinal fibrillar motion as a basis for steady rotational protoplasmic streaming. J Theor Biol. 1972 Oct;37(1):75–91. doi: 10.1016/0022-5193(72)90115-4. [DOI] [PubMed] [Google Scholar]
- Durham A. C. A unified theory of the control of actin and myosin in nonmuscle movements. Cell. 1974 Jul;2(3):123–135. doi: 10.1016/0092-8674(74)90087-7. [DOI] [PubMed] [Google Scholar]
- Kamiya N., Kuroda K. Dynamics of cytoplasmic streaming in a plant cell. Biorheology. 1973 Jun;10(2):179–187. doi: 10.3233/bir-1973-10211. [DOI] [PubMed] [Google Scholar]
- Korn E. D. Biochemistry of actomyosin-dependent cell motility (a review). Proc Natl Acad Sci U S A. 1978 Feb;75(2):588–599. doi: 10.1073/pnas.75.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langley K. H., Piddington R. W., Ross D., Sattelle D. B. Photon correlation analysis of cytoplasmic streaming. Biochim Biophys Acta. 1976 Oct 22;444(3):893–898. doi: 10.1016/0304-4165(76)90335-4. [DOI] [PubMed] [Google Scholar]
- Mustacich R. V., Ware B. R. A study of protoplasmic streaming in Nitella by laser Doppler spectroscopy. Biophys J. 1976 May;16(5):373–388. doi: 10.1016/S0006-3495(76)85695-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mustacich R. V., Ware B. R. Velocity distributions of the streaming protoplasm in Nitella flexilis. Biophys J. 1977 Mar;17(3):229–241. doi: 10.1016/S0006-3495(77)85652-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagai R., Hayama T. Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells. J Cell Sci. 1979 Apr;36:121–136. doi: 10.1242/jcs.36.1.121. [DOI] [PubMed] [Google Scholar]
- Nagai R., Rebhun L. I. Cytoplasmic microfilaments in streaming Nitella cells. J Ultrastruct Res. 1966 Mar;14(5):571–589. doi: 10.1016/s0022-5320(66)80083-7. [DOI] [PubMed] [Google Scholar]
- Nothnagel E. A., Barak L. S., Sanger J. W., Webb W. W. Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara. J Cell Biol. 1981 Feb;88(2):364–372. doi: 10.1083/jcb.88.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nothnagel E. A., Sanger J. W., Webb W. W. Effects of exogenous proteins on cytoplasmic streaming in perfused Chara cells. J Cell Biol. 1982 Jun;93(3):735–742. doi: 10.1083/jcb.93.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sattelle D. B., Buchan P. B. Cytoplasmic streaming in Chara corallina studied by laser light scattering. J Cell Sci. 1976 Dec;22(3):633–643. doi: 10.1242/jcs.22.3.633. [DOI] [PubMed] [Google Scholar]
- Tazawa M. Motive force of the cytoplasmic streaming in nitella. Protoplasma. 1968;65(1):207–222. doi: 10.1007/BF01666379. [DOI] [PubMed] [Google Scholar]
- Williamson R. E. Cytoplasmic streaming in Chara: a cell model activated by ATP and inhibited by cytochalasin B. J Cell Sci. 1975 May;17(3):655–668. doi: 10.1242/jcs.17.3.655. [DOI] [PubMed] [Google Scholar]
- Williamson R. E. Filaments associated with the endoplasmic reticulum in the streaming cytoplasm of Chara corallina. Eur J Cell Biol. 1979 Dec;20(2):177–183. [PubMed] [Google Scholar]
- Yano M. Observation of steady streamings in a solution of Mg-ATP and acto-heavy meromyosin from rabbit skeletal muscle. J Biochem. 1978 Apr;83(4):1203–1204. doi: 10.1093/oxfordjournals.jbchem.a132012. [DOI] [PubMed] [Google Scholar]
- Yano M., Yamada T., Shimizu H. Studies of the chemo-mechanical conversion in artificially produced streamings. I. Reconstruction of a chemo-mechanical system from acto-HMM of rabbit skeletal muscle. J Biochem. 1978 Aug;84(2):277–283. doi: 10.1093/oxfordjournals.jbchem.a132128. [DOI] [PubMed] [Google Scholar]